Skip to main content
Log in

Moisture Quotients for Ammonia Volatilization from Four Soils in Potato Production Regions

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Ammonia (NH3) emission from nitrogen (N) fertilizers used in agriculture decreases N uptake by the crop and negatively impacts air quality. In order to better understand the factors influencing NH3 emission from agriculture, this research was conducted with four major soils used for potato production: Biscayne Marl Soil (BMS, pH 7.27), and Krome Gravelly Loam (KGL, pH 7.69) from Florida; and Quincy Fine Sand (QFS, pH 6.65), and Warden Silt Loam (WSL, pH 6.46) from Washington. Potassium nitrate (KNO3), ammonium nitrate (NH4NO3), ammonium sulfate ((NH4)2SO4) or urea ((NH)2CO) sources were evaluated for ammonia volatilization at 75 kg N ha−1 rate. The soil water regime was maintained at either 20 or 80% of field capacity (FC), and incubated at 11, 20 or 29°C. Results indicated that NH3 volatilization rate at 20% FC was 2 to 3-fold greater than that at 80% FC. The cumulative volatilization loss over 28 days ranged from 0.21% of N applied as NH4NO3 to 25.7% as (NH4)2SO4. Results of this study demonstrate that NH3 volatilization was accelerated at the low soil water regime. Moisture quotient (Q) is defined as a ratio of NH3 emission rate at 20% FC to that at 80% FC both at the same temperature. The peak Q values of NH3 volatilization were up to 20.8 for the BMS soil at 20°C, 112.9 for the KGL soil at 29°C, 19.0 for the QFS soil at 20°C, and 74.1 for the WSL soil at 29°C, respectively. Thus, maintaining a suitable soil water regime is important to minimize N-loss via NH3 volatilization and to improve N uptake efficiency and air quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Asman, W. A. H., Jonker, P. J., Slanina, J., & Baard, J. H. (1982). Neutralization of acid in precipitation and some results of sequential rain sampling. In: H. W. Georgii, J. Pankarth (Eds.) Deposition of Atmospheric pollutants.(pp. 115–124). Dordrecht, The Netherlands: Reidel.

    Google Scholar 

  • Aneja, V. A., Schlesinger, W. H., Niyogi, D., Jennings, G., Gilliam, W., Knighton, R. E., et al. (2006). Emerging national research needs for agricultural air quality. EOS, 87(3), 25–36.

  • Aneja, V. P., Murray, G. C., & Southerland, J. (1998). Atmospheric nitrogen compounds: Emissions, transport, transformation, deposition and assessment. Environmental Manager, 22–25.

  • Boussingault, J. B. (1851). Die Landwirtschaft in ihren Beziehungen zur Chemie Physik und Meteorologie. Auflage II, Übersetzt von Graeger H. Halle, Verlag von Ch. Graeger.

  • Bran+Luebbe, AutoAnalyzer Applications. Method No. US-696D-82X. 1025 Busch Parkway, Buffalo Grove, IL 60089. pp 1–6.

  • Brunekreef, B., & Holgate, S. T. (2002). Air pollution and health. Lancet, 360, 1233–1242.

    Article  CAS  Google Scholar 

  • Buijsman, E., Maas, H. F. M., & Asman, W. A. H. (1987). Anthropogenic NH3 emissions in Europe. Atmospheric Environment, 21, 1009–1022.

    Article  CAS  Google Scholar 

  • Bussink, D. W., & Oenema, O. (1998). Ammonia volatilization from dairy farming systems in temperate areas: A review. Nutrient Cycling Agroecosystems, 51, 19–33.

    Article  Google Scholar 

  • Dentener, F. J. & Crutzen, P. J. (1994). A three-dimensional model of the global ammonia cycle. Journal Atmospheric Chemistry, 19, 331–369.

    Article  CAS  Google Scholar 

  • Dockery, D. W., Pope III, A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., et al. (1993). An association between air pollution and mortality in six U.S. cities. New England Journal of Medicine, 329(24), 1753–1759.

    Article  CAS  Google Scholar 

  • Duce, A. R., Liss, P. S., Merrill, J. T., Atlas, E. S., Buat-Menard, P., Hicks, B. B., et al. (1991). The atmospheric input of trace species to the world ocean. Global Biogeochemical Cycles, 5, 193–259.

    Article  CAS  Google Scholar 

  • Emberger, L. (1955). Afrique du nord-ouest. In: Plant ecology: Review of research. Arid Zone Research, VI. Paris: UNESCO. pp. 219–249.

  • EPA (1993). Ammonia analysis method: USEPA 350.1, Revision 2.0, Methods for the determination of inorganic substances in environmental samples. EPA-600/R-93-100.

  • Fangmeier, A., Hadwiger-Fangmeier, A., van der Eerden L. J., & Jäger, H. (1994). Effects of atmospheric ammonia on vegetation - a review. Environmental Pollution, 86, 43–82.

    Article  CAS  Google Scholar 

  • FAO/IFA (2001). Global estimates of gaseous emissions of NH3, NO and N2O from agricultural land. Food and Agriculture Organization of the United Nations (FAO)/International Fertilizer Industry Association (IFA), Rome, 106. (Available from http://www.fertilizer.org/ifa).

  • Fenn, L. B., & Hossner, L. R. (1985). Ammonia volatilization from ammonia or ammonium-forming nitrogen fertilizers. In: Stewart, B. A. (Ed.) Advances in soil sciences. (pp 123–169). Berlin Heidelberg New York: Springer.

    Google Scholar 

  • Fenn, L. B., & Miyamoto, S. (1981). Ammonia loss and associated reactions of urea in calcareous soils. Soil Science Society of America Journal, 45, 537–540.

    Article  Google Scholar 

  • Ferm, M. (1998). Atmospheric ammonia and ammonium transport in Europe and critical loads: A review. Nutrient Cycling in Agroecosystem, 51, 5–17.

    Article  CAS  Google Scholar 

  • Finlayson-Pitts, B. J., & Pitts, J. N. Jr. (1986). Atmospheric chemistry: Fundamentals and experimental techniques. New York: Wiley.

    Google Scholar 

  • Finlayson-Pitts, B. J., & Pitts, J. N. Jr. (2000). Chemistry of the upper and lower atmosphere (pp. 265–293; 763–843). San Diego, CA: Academic.

  • Fowler, S., Sutton, M., Flechard, E., & Pitcairn, C. (1997). Ammonia sources, land-atmosphere exchange and effects: A European perspective. In: Proceedings of the Workshop on Atmospheric Nitrogen Compounds: Emissions, Transport, Transformation, Deposition and Assessment (pp. 36–46). Raleigh, NC: North Caroline State University.

  • Fox, R. H., & Hoffman, L. D. (1981). The effect on N fertilizer source on grain yield, N uptake, soil pH, and lime requirement in no-till corn. Agronomy Journal, 73, 891–895.

    Article  CAS  Google Scholar 

  • Gay, S. W., & Knowlton, K. F. (2005). Ammonia emission and animal agriculture. Virginia Cooperative Extension/Biological Systems Engineering. Publication 442–110. pp. 1–5.

  • He, Z. L., Alva, A. K., Calvert, D. V., & Banks, D. J. (1999). Ammonia volatilization from different fertilizer sources and effects of temperature and soil pH. Soil Science, 164, 750–758.

    Article  CAS  Google Scholar 

  • Hilhorst, M. A., Dirksen, C., Kampers, F. W. H., & Feddes, R. A. (2001). Dielectric relaxation of bound water versus soil matrix pressure. Soil Science Society of America Journal, 65, 311–314.

    Article  CAS  Google Scholar 

  • IPCC (The Intergovernmental Panel on Climate Change) (1996). In: Houghton, J. T., Meira, L. G., Filho, B., Callander, A., Harris, N., Kattenberg, A., et al. (Eds.), Climate change 1995: The science of climate change. Cambridge, U.K: Cambridge University Press.

    Google Scholar 

  • Jackson, T. J., & Schmugge, T. J. (1989). Passive microwave remote sensing system for soil moisture: Some supporting research. IEEE Transactions on Geosicience and Remote Sensing, 27, 255–235.

    Google Scholar 

  • Kelsall, J. E., Samet, J. M., Zeger, S. L., & Xu, J. (1997). Air pollution and mortality in Philadelphia, 1974–1988. American Journal of Epidemiology, 146(9), 750–762.

    CAS  Google Scholar 

  • Kirchmann, H., Esala, M., Morken, J., Fem, M., Bussink, W., Gustavsson, J., et al. (1998). Ammonia emissions from agriculture. Nutrient Cycling Agroecosystem, 51, 1–3.

    Article  Google Scholar 

  • Koorevaar, P., Menelik, G., & Dirksen, C. (1983). Elements of soil physics: Developments in soil science. 13. Elsevier Science.

  • Liu, G. D., Li, Y. C., & Alva, A. K. (2007). High water regime can reduce ammonia volatilization from soils under potato production. Community Solutions, 38, (in press).

  • Marcazzan, G. M., Vaccaro, S., Valli, G., & Vecchi, R. (2001). Characterization of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy). Atmosphere Environment, 35, 4639–4650.

    Article  CAS  Google Scholar 

  • Muñoz-Carpena, R., Li., Y. C, & Olczyk, T. (2005). Alternatives of low cost soil moisture monitoring devices for vegetable production in South Miami-Dade County. Document ABE 333, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. http://edis.ifas.ufl.edu..

  • Njoku, R. W., & Entekhabi, D. (1996). Passive microwaveremote sensing of soil moisture. Journal of Hydrology, 184, 101–129.

    Article  CAS  Google Scholar 

  • NRC (2003). Air emissions from animal feeding operations. Washington, D.C.: The National Academies Press.

    Google Scholar 

  • Oliver, A. (1997). Dampness in buildings. 2nd edition revised by Douglas, J. and Stirling, J. S., Blackwell Science, Oxford, UK.

  • Pagano, P., de Zaiacomo, T., Scarcella, E., Bruni, S., & Calamosca, M. (1998). Mutagenic activity of total and particle-sized fraction of urban particulate matter. Environmental Science and Technology, 30, 3512–3516.

    Article  Google Scholar 

  • Pearl, H. W. (1991). Ecophysiological and trophic implications of light simulated amino acid utilization in marine picoplankton. Applied Environmental Microbiology, 57, 473–479.

    Google Scholar 

  • Pearl, H. W. (1995). Coastal eutrophication in relation to atmospheric nitrogen deposition: Current perspectives. Ophelia, 41, 237–259.

    Google Scholar 

  • Schlesinger, W. H., & Hartley, A. E. (1992). A global budget for atmospheric NH3. Biogeochemistry, 15, 191–211.

    Article  CAS  Google Scholar 

  • Schwartz, J., Dockery, D. W., & Neas, L. M. (1996). Is daily mortality associated specifically with fine particles? Journal of Air & Waste Management Association, 46, 927–939.

    CAS  Google Scholar 

  • Sommer, S. G., Schjoerring, J. K., & Denmead, O. T. (2004). Ammonia emission from mineral fertilizers and fertilized crops. Advances in Agronomy, 82, 557–622.

    Article  CAS  Google Scholar 

  • Sprengel, C. (1839). Die Lehre vom Dünger. Verlag J. Müller, Leipzig. pp. 1–456.

    Google Scholar 

  • Van Breeman, N., Burrough, P. A., Velthorst, E. J., Van Dobben, H. F., De Wit, T., Ridder, T. B., et al. (1982). Soil acidification from atmospheric sulphate in forest canopy through-fall. Nature, 299, 548–550.

    Article  Google Scholar 

  • Vazquez-Rodriguez, G. A., & Rols, J. L. (1997). Study of the nitrification process with activated sludge: inhibiting effect of ammonia on nitrifying bacteria. Revue des Sciences de l’Eau, 10, 359–375.

    Google Scholar 

  • Viitanen, H. (1997). Critical time of different humidity and temperature conditions for the development of brown rot decay in pine and spruce. Holzforschung, 51(2), 99–106.

    Article  CAS  Google Scholar 

  • Vlek, P. L. G., & Carter, M. F. (1983). The effect of soil environment and fertilizer modifications on the rate of urea hydrolysis. Soil Science, 136, 56–63.

    Article  CAS  Google Scholar 

  • Voutilainen, J. (2005). Methods and instrumentation for measuring moisture in building structures. Dissertation for degree of Doctor of Science at Helsinki University of Technology, Espoo, Finland.

  • Warneck , P. (1999). Chemistry of the natural atmosphere (pp. 1–905). London: Academic.

    Google Scholar 

Download references

Acknowledgement

This research was supported by the Florida Agricultural Experiment Station and a grant from USDA-ARS. The authors are greatly indebted to Dr. Waldemar Klassen and Dr. Thomas Davenport for their invaluable comments and suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. C. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G.D., Li, Y.C. & Alva, A.K. Moisture Quotients for Ammonia Volatilization from Four Soils in Potato Production Regions. Water Air Soil Pollut 183, 115–127 (2007). https://doi.org/10.1007/s11270-007-9361-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9361-9

Keywords

Navigation