Skip to main content
Log in

Sorption Behavior of 4-Chlorophenol from Aqueous Solutions By a Surfactant-modified Mexican Zeolitic Rock in Batch and Fixed Bed Systems

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The removal of 4-chlorophenol from aqueous solutions by both a Mexican clinoptilolite-heulandite zeolitic rock and the modified zeolitic material with the surfactant hexadecyltrimethylammonium bromide (HDTMABr), using batch and packed-bed (column) configurations, was investigated. The unmodified zeolitic rock did not show any adsorption of 4-chlorophenol. The effects of pH, contact time and concentration of 4-chlorophenol on the adsorption process by the surfactant modified material were examined. The sorption of 4-chlorophenol was not affected by the pH range from 4 to 9.5. 4-chlorophenol retention reached equilibrium in about 18 h and the rate of 4-chorophenol adsorption by the modified material was faster in the first 10 h than later. The experimental data were treated with the models: pseudo-first order, pseudo-second order, fractional power and Elovich models. Although, the last three gave correlation coefficients higher than 0.96, the pseudo-second order model was the best to describe the reaction rate. The experimental data follow a linear isotherm which is characteristic for sorption of organic solutes by the partition mechanism. The Bed Depth-Service Time Model was applied to the sorption results in order to model the column operation. The results showed that the surfactant modified zeolitic rock could be considered as a potential adsorbent for 4-chlorophenol removal from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad, A. L., & Tan, K. Y. (2004). Reverse osmosis of binary organic solute mixtures in the presence of strong solute-membrane affinity. Desalination, 165, 193–199.

    Article  CAS  Google Scholar 

  • Bollag, J. M., Chu, H. L., Rao, M. A., & Gianfreda, L. (2003). Enzymatic oxidative transformation of chlorophenol mixtures. Journal of Environmental Quality, 32, 63–69.

    Article  CAS  Google Scholar 

  • Bowman, R. S., Haggerty, G. M., Huddleston, R. G., Neel, D., & Flynn, M. M. (1995). Sorption of nonpolar organic-compounds, inorganic cations, and inorganic oxyanions by surfactant-modified zeolites. In D. A. Sabatini, R. C. Knox, & J. H. Harwell (Eds.), Surfactant-enhanced subsurface remediation. ACS symposium series (pp. 54–64). Washington, DC: American Chemical Society.

    Google Scholar 

  • Cortés-Martínez, R., Martínez-Miranda, V., Solache-Ríos, M., & García-Sosa, I. (2004). Evaluation of natural and surfactant-modified zeolites in the removal of cadmium from aqueous solutions. Separation Science and Technology, 39, 2711–2730.

    Article  CAS  Google Scholar 

  • Crittenden, B., & Thomas, W. J. (1998). Adsorption technology and design (1st ed.). Great Britain: Butterworth-Heinemann.

    Google Scholar 

  • D’Angelo, E., & Reddy, K. R. (2003). Effect of aerobic and anaerobic conditions of chlorophenol sorption in wetland soils. Soil Science Society of American Journal, 67, 787–794.

    Article  CAS  Google Scholar 

  • Deliyanni, E. A., Bakoyannakis, D. N., Zouboulis, A. I., & Peleka, E. (2003). Removal of arsenic and cadmium by akaganeite fixed-beds. Separation Science and Technology, 30, 3967–3981.

    Article  CAS  Google Scholar 

  • Demirbas, E., Kobya, M., Senturk, E., & Ozkan, T. (2004). Adsorption kinetics for the removal of chromium (VI) from aqueous solutions on the activated carbons prepared from agricultural wastes. Water SA, 30, 533–539.

    CAS  Google Scholar 

  • Díaz-Nava, M. C. (1999) Caracterización y evaluación de clinoptilolita e hidrotalcita para remoción de iones fluoruro del agua. Tesis de Maestría en Ciencias del Agua, Facultad de Ingeniería, Universidad Autónoma del Estado de México.

  • González-Juárez, J. C., & Jiménez-Becerril, J. (2006). Gamma radiation-induced catalytic degradation of 4-chlorophenol using SiO2, TiO2, and Al2O3. Radiation Physics and Chemistry, 75, 768–772.

    Article  CAS  Google Scholar 

  • Haggerty, G. M., & Bowman, R. S. (1994). Sorption of chromate and other inorganic anions by organo-zeolite. Environmental Science and Technology, 28, 452–458.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (2002). Application of kinetics models to the sorption of copper(II) on to peat. Adsorption Science and Technology, 20, 797–815.

    Article  CAS  Google Scholar 

  • Ho, Y. S., Ng, J. C. Y., & McKay, G. (2001). Removal of lead(II) from effluents by sorption on peat using second-order kinetics. Separation Science and Technology, 36, 241–261.

    Article  CAS  Google Scholar 

  • Juang, R. S., Lin, S. H., & Tsao, K. H. (2004). Sorption of phenols from water in column systems using surfactant modified montmorillonite. Journal of Colloid and Interface Science, 269, 46–52.

    Article  CAS  Google Scholar 

  • Kim, J. H., Shin, W. S., Song, D. I., & Choi, S. J. (2005). Multi-step competitive sorption and desorption of chlorophenols in surfactant modified montmorillonite. Water, Air, and Soil Pollution, 166, 367–380.

    Article  CAS  Google Scholar 

  • Kim, J. H., Shin, W. S., Song, D. I., & Choi, S. J. (2006). Sequential competitive sorption and desorption of chlorophenols in organoclay. Korean Journal of Chemical Engineering, 23, 63–70.

    CAS  Google Scholar 

  • Kim, D. G., Song, D. I., & Jeon, Y. W. (2001). pH-dependent sorptions of phenolic compounds onto montmorillonite modified with hexadecyltrimethylammonium cation. Separation Science and Technology, 36, 3159–3174.

    Article  CAS  Google Scholar 

  • Li, Z. H., Anghel, I., & Bowman, R. S. (1998). Sorption of oxyanions by surfactant-modified zeolite. Journal of Dispersion Science and Technology, 19, 843–857.

    CAS  Google Scholar 

  • Low, M. J. D. (1960). Kinetics of chemisorption of gases on solids. Chemical Reviews, 60, 267–312.

    Article  CAS  Google Scholar 

  • Michalowicz, J., & Duda, O. W. (2005). Analysis of chlorophenols, chlorocatechols, chlorinated methoxyphenols and nanoterpenes in communal sewage of Lodz and in the Ner river in 1999–2000. Water, Air, and Soil Pollution, 164, 205–222.

    Article  CAS  Google Scholar 

  • Mumpton, F., & Ormsby, C. (1976). Morphology of zeolites in sedimentary rocks by scanning electron microscopy. Clays and Clay Minerals, 24, 1–23.

    Article  CAS  Google Scholar 

  • Podkoscielny, P., Dabrowski, A., & Marijuk, O. V. (2003). Heterogeneity of active carbons in adsorption of phenol aqueous solutions. Applied Surface Science, 205, 297–303.

    Article  CAS  Google Scholar 

  • Polati, S., Gosetti, F., Gianotti, V., & Gennaro, M. A. (2006). Sorption and desorption behavior of chloroanilines and chlorophenols on montmorillonite and kaolinite. Journal of Environmental Science and Health Part B, 41, 765–779.

    CAS  Google Scholar 

  • Sparks, D. L. (1989). Kinetics of soil chemical processes. USA: Academic.

    Google Scholar 

  • Sullivan, E. J., Hunter, D. B., & Bowman, R. S. (1998). Fourier transform Raman Spectroscopy and sorbed HDTMA and the mechanism of cromate sorption to surfactant-modified clinoptilolite. Environmental Science & Technology, 32, 1948–1955.

    Article  CAS  Google Scholar 

  • Syamsiah, S., & Hadi, I. S. (2004). Adsorption cycles and effect of microbial population on phenol removal using natural zeolite. Separation and Purification Technology, 34, 125–133.

    Article  CAS  Google Scholar 

  • Tseng, R. L., Wu, F. C., & Juang, R. S. (2003). Liquid-phase adsorption of dyes and phenols using pinewood-based activated carbons. Carbon, 41, 487–495.

    Article  CAS  Google Scholar 

  • US-EPA (United States Environmental Protection Agency) (1980). Ambient water quality criteria for chlorinated phenols. Office of water regulations and standards. EPA 440/5-80-032. Washington DC.

  • WHO (World Health Organization) (2003), Chlorophenols in drinking water. WHO/SDE/WSH/03.04/47.

  • Yu, J. Y., Shin, M. Y., Noh, J. H., & Seo, J. J. (2004). Adsorption of phenol and chlorophenols on hexadecyltrimethylammonium- and tetramethylammonium-montmorillonite from aqueous solutions. Geosciences Journal, 8, 191–198.

    Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from CONACyT, projects 46219 and 12445 (Fondos Mixtos CONACYT-Gobierno del Estado de Michoacán).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Solache-Ríos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortés-Martínez, R., Solache-Ríos, M., Martínez-Miranda, V. et al. Sorption Behavior of 4-Chlorophenol from Aqueous Solutions By a Surfactant-modified Mexican Zeolitic Rock in Batch and Fixed Bed Systems. Water Air Soil Pollut 183, 85–94 (2007). https://doi.org/10.1007/s11270-007-9358-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9358-4

Keywords

Navigation