Skip to main content

Advertisement

Log in

Characteristics and Source Identification of Particulate Matter in Wintertime in Beijing

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Aerosol samples were collected during the wintertime from Nov. 24, 1998 to Feb. 12, 1999 in Beijing, China. Chemical composition was determined using several analytical techniques, including inductive coupled plasma atomic emission spectroscopy (ICP-AES), graphite furnace atomic absorption spectroscopy (GFAAS) and flame atomic absorption spectroscopy (FAAS) for trace elements, ion chromatography (IC) for water-soluble ions and CHN elemental analyzer for organic carbon (OC) and elemental carbon (EC). The average concentration of aerosol was 375 ± 169 μg m−3, ranging from 136 to 759 μg m−3. Multilinear regression (MLR) analysis was performed and crustal matter, secondary particles and organics were identified as three major components of aerosol in wintertime in Beijing, accounting for 57.3% ± 9.8%, 13.4% ± 8.0%, and 22.8% ± 5.9% of the total concentration, respectively. Based on performance evaluation, Al, SO4 2− and OC were selected as tracers of the three components, with the regression coefficients of 23.5, 1.78 and 1.26, respectively. A regression constant of 19.6 was obtained, which accounts for other minor components in aerosol. On average 93.5% of the total aerosol concentration, ranging from 82% to 105%, was explained by crustal matter, secondary particle and organics. Meteorological conditions are important factors that can influence the concentration level and chemical composition of aerosols. Wind would be favorable for the pollutant dilution, leading to low aerosol levels, whereas too strong a wind may cause regional soil dust and local road dust to be resuspended resulting in a high contribution of crustal matter. Circuitous air movement, high RH% and low wind speed facilitated the secondary particle formation, not only inorganic salts, such as sulfate and nitrate, but also secondary organic carbon in a similar way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Appel, B. R., Tokiwa, Y., Hsu, J., Kothny, E. L., & Hahn, E. (1985). Visibility as related to atmospheric aerosol constituents. Atmospheric Environment, 9, 1525–1531.

    Google Scholar 

  • Baik, N. J., Kim, Y. P., & Moon, K. C. (1996). Visibility study in Seoul, 1993. Atmospheric Environment, 30(13), 2319–2328.

    Article  CAS  Google Scholar 

  • Cao, J. J., Lee, S. C., Ho, K. F., Zhang, X. Y., Zou, S. C., Fung, K, et al. (2003). Characteristics of carbonaceous aerosol in Pearl River Delta Region, China during 2001 winter period. Atmospheric Environment, 37, 1451–1460.

    Article  CAS  Google Scholar 

  • Castro, L. M., Pio, C. A., Harrison, R. M., & Smith, D. J. T. (1999). Carbonaceous aerosol in urban and rural European atmosphere: Estimation of secondary organic carbon concentrations. Atmospheric Environment, 33, 2771–2781.

    Article  CAS  Google Scholar 

  • Chan, Y. C., Simpson, G. H., Mctainsh G. H., Vowles, P. D., et al. (1997). Characterization of chemical species in PM2.5 and PM10 aerosols in Brisbane, Australia. Atmospheric Environment, 31, 3773–3785.

    Article  CAS  Google Scholar 

  • Charlson, R. J., Langner, J., Rodhe, H., Leovy, C. B., & Warren, S. G. (1991). Pertubation of the northern hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. Tellus, 43 AB, 152–163.

    Google Scholar 

  • Chen, Z. L., Zhang, Y. H., Ma, C. G., & He, F. Z. (1988). Regional pollution character of atmospheric particulate matter in Jingjin area. Environmental Science, 10(4), 24–27 (in Chinese with abstract in English).

    Google Scholar 

  • Chi, X. G., Di, Y. A., Dong, S. P., & Liu, X. D. (1999). Determination of atmospheric aerosol organic carbon and elemental carbon. Environment Monitoring in China, 15(4), 11–13 (in Chinese with abstract in English).

    Google Scholar 

  • Christoforou, C. S., Salmon, L. G., Cass, G. R., Hannigan, M. P., Solomon, P. A., & Cass, G. R. (2000). Trends in fine particle concentration and chemical composition in southern California. Journal of the Air and Waste Management Association, 50, 43–53.

    CAS  Google Scholar 

  • Countess, R. J., Wolff, G. T., & Cadle, S. H. (1980). The Denver winter aerosol: A comprehensive chemical characterization. Journal of the Air Pollution Control Association, 30, 1194–1200.

    CAS  Google Scholar 

  • Dan, M., Zhuang, G. S., Li, X. X., Tao, H. R., & Zhuang, Y. H. (2004). The characteristics of carbonaceous species and their sources in PM2.5 in Beijing. Atmospheric Environment, 38, 3443–3452.

    Article  CAS  Google Scholar 

  • Dockery, D. W., & Pope, C. A. (1994). Acute respiratory effects of particulate air pollution. Annual Review of Public Health, 15, 107–132.

    Article  CAS  Google Scholar 

  • Duan, F. K., Liu, X. D., Dong, S. P., Lu, Y. Q., Yu, T., & Cachier, H. (2004). Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentration in Beijing. Atmospheric Environment, 38, 1275–1282.

    Article  CAS  Google Scholar 

  • Duan, F. K, Liu, X. D., He, K. B., Lu, Y. Q., & Wang, L. (2003). Atmospheric aerosol concentration level and chemical characteristic of its water-soluble ionic species in wintertime in Beijing, China. Journal of Environmental Monitoring, 5, 569–573.

    Article  CAS  Google Scholar 

  • Environmental Status Communique of Beijing Environmental Protection Bureau, China, http://www.bjepb.gov.cn.

  • Goss, K.-U., & Schwarzenbach, R. P. (1998). Gas/solid and gas/liquid partitioning of organic compounds: Critical evaluation of equilibrium constants. Environmental Science & Technology, 32, 2025–2032.

    Article  CAS  Google Scholar 

  • He, K., Yang, F., Ma, Y., Zhang, Q., Yao, X., Chan, C. K., et al. (2001). The characteristics of PM2.5 in Beijing, China. Atmospheric Environment, 35, 4959–4970.

    Article  CAS  Google Scholar 

  • In, H. J., & Park, S. U. (2003). Estimation of dust emission amount for a dust storm event occurred in April 1998 in China. Water, Air and Soil Pollution, 148, 201–221.

    Article  CAS  Google Scholar 

  • Lewis, C. W., Baumgardner, R. E., & Stevens, R. K. (1986). Receptor modeling study of Denver winter haze. Environmental Science and Technology, 20, 1126–1136.

    Article  CAS  Google Scholar 

  • Lin, J. J., & Tai, H. S. (2001). Concentrations and distributions of carbonaceous species in ambient particles in Kaohsiung City, Taiwan. Atmospheric Environment, 35, 2627–2636.

    Article  CAS  Google Scholar 

  • Lipfert, F. W., & Wyzga, R. E. (1995). Air pollution and mortality, issues and uncertainties. Journal of the Air and Waste Management Association, 45, 949–966.

    CAS  Google Scholar 

  • Liu, X. D., Chi, X. G., Duan, F. K., Dong, S. P., & Yu T. (2000). Determination of organic carbon and elemental carbon in Chinese urban aerosols by using CHN elemental analyzer. Journal of Aerosol Science, 31(supplement 1), s240–s241.

    Article  Google Scholar 

  • Novakov, T., & Penner, J. E. (1993). Large contribution of organic aerosols to cloud-condensation nuclei concentrations. Nature, 365, 323–365.

    Article  Google Scholar 

  • Salma, I., Chi, X. G., & Maenhaut, W. (2004). Elemental and organic carbon in urban canyon and background environments in Budapest, Hungary. Atmospheric Environment, 38, 27–36.

    Article  CAS  Google Scholar 

  • Salvador, P., Artinano, B., Alonso, D. G., Querol, X., & Alastuey, A. (2004). Identification and characterization of sources of PM10 in Madrid (Spain) by statistical methods. Atmospheric Environment, 38, 435–447.

    Article  CAS  Google Scholar 

  • Schmid, H., Laskus, L., Abraham, H. J., Baltensperger, U., Lavanchy, V., Bizjak, M., et al. (2001). Results of the carbon conference international aerosol carbon round robin test stage I. Atmospheric Environment, 35, 2111–2121.

    Article  CAS  Google Scholar 

  • Schwartz, J. (1993). Particulate air pollution and chronic respiratory disease. Environmental Research, 62, 7–13.

    Article  CAS  Google Scholar 

  • Seinfeld, J. H., & Pandis, S. N. (1998). Atmospheric chemistry and physics from air pollution to climate change. New York: Wiley.

    Google Scholar 

  • Sievering, H., Boatman, J., Galloway, J., Keene, W., Kim, Y., Luria, M., et al. (1991). Heterogeneous sulfur conversion in sea-salt aerosol particles, the role of aerosol water content and size distribution. Atmospheric Environment, 25, 1479–1487.

    Google Scholar 

  • Sun, Y. L., Zhuang, G. S., Zhang, W. J., Wang, Y., & Zhuang, Y. H. (2006). Characteristics and sources of lead pollution after phasing out leaded gasoline in Beijing. Atmospheric Environment, 40, 2973–2985.

    Article  CAS  Google Scholar 

  • Turpin, B. J., & Huntzicher, J. J. (1995). Identification of secondary organic aerosol episodes and quantisation of primary and secondary organic aerosol concentrations during SCAQS. Atmospheric Environment, 29, 3527–3544.

    Article  CAS  Google Scholar 

  • Viidanoja, J., Sillanpaa, M., Laakia, J., Kerminen,V., Hillamo, R., Aarnio, P., et al. (2002). Organic and black carbon in PM2.5 and PM10, one year of data from an urban site in Helsinki, Finland. Atmospheric Environment, 36, 3139–3183.

    Article  Google Scholar 

  • Wai, K. M., & Tanner, P. A. (2005). Case studies of Asian dust storm impacts on a coastal site: Implication of a good dust storm tracer. Water, Air and Soil Pollution, 168, 59–70.

    Article  CAS  Google Scholar 

  • Yao, X. H., Lau, A. P. S., Fang, M., Chan, C. K., & Hu, M. (2003). Size distributions and formation of ionic species in atmospheric particulate pollutants in Beijing, China. 1. Inorganic ions. Atmospheric Environment, 37, 2991–3000.

    Article  CAS  Google Scholar 

  • Yu, J. Z., Huang, X. F., Xu, J. H., & Hu, M. (2005). When aerosol sulfate goes up, so does oxalate, implication for the formation mechanisms of oxalate. Environmental Science and Technology, 39, 128–133.

    CAS  Google Scholar 

  • Zheng, M., Salmon, L. G., Schauer, J. J., Zeng, L. M., Kiang, C. S., Zhang, Y. H., et al. (2005). Seasonal trends in PM2.5 source contributions in Beijing, China. Atmospheric Environment, 39, 3967–3976.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by The National Basic Research Program of China (no. 2003CB415003), the National Science Foundation of China (20177036, 20477042), and China State Environmental Protection Administration (97510). Beijing EPB is appreciated for supplying us the meteorological information and auto-monitoring data of SO2. We also appreciate Dr. Iwamoto for his helps and suggestions in performing MLR software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. D. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, F.K., Liu, X.D., He, K.B. et al. Characteristics and Source Identification of Particulate Matter in Wintertime in Beijing. Water Air Soil Pollut 180, 171–183 (2007). https://doi.org/10.1007/s11270-006-9261-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-006-9261-4

Keywords

Navigation