Water, Air, and Soil Pollution

, Volume 180, Issue 1–4, pp 109–118 | Cite as

Remediation of As-Contaminated Soils in the Guadiamar River Basin (SW, Spain)

  • J. Aguilar
  • C. Dorronsoro
  • E. Fernández
  • J. Fernández
  • I. García
  • F. MartínEmail author
  • M. Sierra
  • M. Simón
Full Research Paper


In 1998, the pond containing the ore wastes from a pyrite mine in Aznalcóllar (SW, Spain) broke open, spilling some 36×105 m3 of acidic waters and 9 × 105 m3 of tailings containing high concentrations of As and heavy metals. The affected area was around 55 km2 of predominantly agricultural soils. After the clean-up of the tailings, many remediation actions were undertaken and the use of blocking agents to immobilize the As was one of the most extended measure. The first experiment performed was to determine the most important soil components in As adsorption under acidic conditions. A second experiment was conducted to neutralize the acidity caused by the solution coming from the tailings undergoing oxidation; an adequate liming material (sugar-refinery scum) was selected and the application rates were established. After the remediation measures, the zone was monitored for three years. A detailed study in four experimental plots located in the most polluted sector was carried out to test the influence of iron oxides in the As immobilization. The use of red soils of the area (rich in free-iron oxides Fed) was established as an appropriate material in the remediation of the area.


arsenic Aznalcóllar iron oxides red soils remediation 



This study has been made possible by the research contract no. 1437 of the Regional Environmental Department of the Andalusian Government. Also thanks to Mr. David Nesbitt for correcting the English of the manuscript.


  1. Aguilar, J., Bellver, R., Dorronsoro, C., Fernández, E., Fernández, J., García, I., et al. (2003). Contaminación de suelos por el vertido tóxico de Aznalcóllar. Junta de Andalucía, Consejería de Medio Ambiente, Sevilla, Spain, 184 pp.Google Scholar
  2. Aguilar, J., Dorronsoro, C., Fernández, E., Fernández, J., García, I., Martin, F., et al. (2004). Soil pollution by a pyrite mine spill in Spain: Evolution in time. Environmental Pollution, 132, 395–401.CrossRefGoogle Scholar
  3. Aguilar, J., Dorronsoro, C., Galán, E., & Gomez-Ariza, J. L. (1999). Criterios y estándares para declarar un suelo contaminado en Andalucía y la metodología y técnicas de toma de muestras y análisis para su investigación. In Univ. Sevilla (Ed.), Investigación y Desarrollo Medioambiental en Andalucía (pp. 45–59). Spain: University of Sevilla.Google Scholar
  4. Barnhisel, R. I., Powell, J. L., Akin, G. W., & Ebelhar, M. W. (1982). Characteristics and reclamation of acid sulfate mine spoils. In J. A. Kitrick, D. S. Fanning, & L. R. Hossner (Eds.), Acid sulfate weathering (pp. 225–234). Madison, Wisconsin, USA: Soil Science Society of America.Google Scholar
  5. Bascomb, C. L. (1961). A calcimeter for routine use on soil samples. Chemical Industry, 45, 1826–1827.Google Scholar
  6. Bohn, H. L., McNeal, B. L., & O’Connor, G. A. (1985). Soil Chemistry. New York: Wiley.Google Scholar
  7. Çolak, M., Gemici, Ü., & Tarcan, G. (2003). The effects of Colemanite deposits on the arsenic concentrations of soil and groundwater in Igdeköy-Emet, Kütahaya, Turkey. Water, Air and Soil Pollution, 149(1–4), 127–143.CrossRefGoogle Scholar
  8. Dudas, M. J. (1987). Accumulation of native arsenic in acid sulphate soils in Alberta. Canadian Journal of Soil Science, 67, 317–321.CrossRefGoogle Scholar
  9. Foster, A. L. (2003). Spectroscopic investigation of arsenic species in solid phases. In A. H. Welch, & K. G. Stollenwerk (Eds.), Arsenic in ground water: geochemistry and occurrence (pp. 27–65). Boston, Massachusetts: Kluwer.CrossRefGoogle Scholar
  10. Galán, E., González, I., & Fernández-Caliani, J. C. (2002). Residual pollution load of soils impacted by the Aznalcóllar (Spain) mining spill after clean-up operations. Science of the Total Environment, 286, 167–179.CrossRefGoogle Scholar
  11. Gills, T. E., & Kane, J. S. (1993). Certificate of analysis. Standard reference material 2711. Gaithersburg, USA: National Institute of Standards and Technology.Google Scholar
  12. Gómez Ariza, J. L., Sánchez Rodas, D., & Giralde, I. (1998). Selective extraction of iron oxide associated species from sediments with complex HOLC–HG–AAS. Journal of Analytical Atomic Spectrometry, 13, 1375–1379.CrossRefGoogle Scholar
  13. Holmgren, G. (1967). A rapid citrate–dithionite extractable iron procedure. Soil Science Society of America Proceedings, 38, 647–652.Google Scholar
  14. Hossain, M. F. (2006). Arsenic contamination in Bangladesh – An overview. Agriculture, Ecosystems and Environment, 113(1–4), 1–16.CrossRefGoogle Scholar
  15. Jiang, W., Zhang, S., Shan, X, Feng, M., Zhu, Y., & McLaren, R. G. (2005). Adsorption of arsenate on soils. Part 2: Modeling the relationship between adsorption capacity and soil physiochemical properties using 16 Chinese soils. Environmental Pollution, 138, 285–289.CrossRefGoogle Scholar
  16. Jones, C. A., Inskeep, W. P., & Neuman, D. R. (1997). Arsenic transport in contaminated mine tailings following liming. Journal of Environmental Quality, 26, 433–439.CrossRefGoogle Scholar
  17. Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (3rd edn.). Boca Raton, Florida, USA: CRC Press.Google Scholar
  18. López-Pamo, E., Barettino, D., Antón-Pacheco, C., Ortiz, G., Arránz, J. C., Gumiel, J. C., et al. (1999). The extent of the Aznalcóllar pyretic sludge spill and its effects on soils. Science of the Total Environment, 242(1–3), 57–88.CrossRefGoogle Scholar
  19. Mudarra, J. L. (1988). Study of soils in the Aljarafe region. Regional Educación and Science Department of the Andalusian Government, Seville, Spain, 121 pp.Google Scholar
  20. N.R.C.C. (1978). Effects of arsenic in the Canadian environment. Ottawa, Canada: National Research Council of Canada, no. 15391.Google Scholar
  21. O’Neill, P. (1995). Arsenic. In B. J. Alloway (Ed.), Heavy metals in soils (2nd edn.) (pp. 105–121). Glasgow, UK: Blackie.Google Scholar
  22. Pierce, N. L., & Moore, C. B. (1980). Adsorption of arsenite and arsenate on amorphous iron hydroxide from dilute aqueous solutions. Environmental Science and Technology, 14, 214–216.CrossRefGoogle Scholar
  23. Quevauviller, Ph., Lachica, M., Barahona, E., Gómez, A., Rauret, G., Ure, A., et al. (1998). Certified reference material for the quality control of EDTA- and DTPA-extractable trace metal contents in calcareous soils (CRM 600). Fresenius’ Journal of Analytical Chemistry, 360, 505–511.CrossRefGoogle Scholar
  24. Simón, M., Martín, F., García, I., Bouza, P., Dorronsoro, C., & Aguilar, J. (2005). Interaction of limestone grains and acidic solutions from the oxidation of pyrite tailings. Environmental Pollution, 135(1), 65–72.CrossRefGoogle Scholar
  25. Simón, M., Martín, F., Ortiz, I., García, I., Fernández, J., Fernández, E., et al. (2001). Soil pollution by oxidation of tailings from toxic spill of a pyrite mine. Science of the Total Environment, 279, 63–74.CrossRefGoogle Scholar
  26. Simón, M., Otiz, I., García, I., Fernández, E., Fernández, J., Dorronsoro, C., et al. (1998). El desastre ecológico de Doñana. Edafología, 5, 153–161.Google Scholar
  27. Simón, M., Otiz, I., García, I., Fernández, E., Fernández, J., Dorronsoro, C., et al. (1999). Pollution of soils by the toxic spill of a pyrite mine (Aznalcóllar, Spain). Science of the Total Environment, 242, 105–115.CrossRefGoogle Scholar
  28. Smith, I. C., Naidu, R., & Alston, A. M. (1998). Arsenic in the soil environment. A review. Advances in Agronomy, 64, 150–195.CrossRefGoogle Scholar
  29. Sun, X., & Doner, H. E. (1996). An investigation of arsenate and arsenite bonding structures on goethite by FTIR. Soil Science, 161, 865–872.CrossRefGoogle Scholar
  30. Urrutia, M. M., García-Rodeja, E., & Macías, F. (1992). Sulphide oxidation in coal-mine dumps: Laboratory measurement of acidifying potential with H2O2 and its application to characterize spoil materials. Environment and Management, 16, 81–89.CrossRefGoogle Scholar
  31. Vidal, M., López-Sánchez, J. F., Sastre, J., Jiménez, G., Dagnac, T., Rubio, R., et al. (1999). Prediction of the impact of the Aznalcóllar toxic spill on the trace element contamination of agricultural soils. Science of the Total Environment, 242(1–3), 131–148.CrossRefGoogle Scholar
  32. Wang, S., & Mulligan, C. N. (2006). Occurrence of arsenic contamination in Canada: Sources, behavior and distribution. Science of the Total Environment, 366(2–3), 701–721.CrossRefGoogle Scholar
  33. Waychunas, G. A., Rea, B. A., Fuller, C. C., & Davis, J. A. (1993). Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and absorbed arsenate. Geochimica et Cosmochimica Acta, 57, 2251–2269.CrossRefGoogle Scholar
  34. WHO (1993). Guidelines for drinking water quality (2nd edn.). Recommendations. World Health Organization.Google Scholar
  35. Yong, R. N., & Mulligan, C. N. (2004). Natural attenuation of contaminants in soils. Boca Raton 7: CRC Press.Google Scholar
  36. Ziemkiewicz, P. F., Skousen, J. G., Brant, D. L., Sterner, P. L., & Lovett, R. J. (1997). Acid mine drainage treatment with armoured limestone in open limestone channels. Journal of Environmental Quality, 26, 718–726.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • J. Aguilar
    • 1
  • C. Dorronsoro
    • 1
  • E. Fernández
    • 1
  • J. Fernández
    • 1
  • I. García
    • 2
  • F. Martín
    • 1
    Email author
  • M. Sierra
    • 1
  • M. Simón
    • 2
  1. 1.Soil Science Department, Faculty of SciencesUniversity of GranadaGranadaSpain
  2. 2.Soil Science Department, CITE IIBUniversity of AlmeríaAlmeríaSpain

Personalised recommendations