Advertisement

Water, Air, and Soil Pollution

, Volume 178, Issue 1–4, pp 179–193 | Cite as

Hydrogeochemistry and Water Balance in the Coastal Wetland Area of “Biviere di Gela,” Sicily, Italy

  • Emanuela Manno
  • Massimo Vassallo
  • Daniela Varrica
  • Gaetano Dongarrà
  • Sergio Hauser
Article

Abstract

In the study area physical and chemical factors control the composition of surface and groundwaters, which in turn determine the water quality of the “Biviere di Gela” lake. These factors combine to create diverse water types which change their compositional character spatially as rainfall infiltrates the soil zone, moves down a topographically defined flow path, and interacts with bedrock minerals. Low-salinity waters, which represent the initial stage of underground circulation, start dissolving calcium carbonate from the local rocks. The progressive increase in salinity, characterized by substantially higher Ca, SO4, Na and Cl concentrations, suggests that dissolution of CaSO4 and NaCl is an important process during water–rock interactions. The “Biviere di Gela” lake is often separated into two units (Lago Grande and Lago Piccolo). “Lago Grande” water is generally of Na-SO4-Cl-type, whereas “Lago Piccolo” water is of Na-Cl-SO4-type. Their total content of dissolved salts varies with season, the amount of rainfall, and inflow of ground and drainage water. Over time, an increasing trend towards greater salinity and also sudden changes in the relative abundances of Cl and SO4 have been recorded for the “Lago Grande.” The isotope composition of the lake water appears to be affected by inflow of ground and surface waters and also by evaporative loss. The nitrate content of waters from the recharge basin is of particular concern because it contributes to lake eutrophication. The trace element contents do not evidence the presence of any significant metal contamination of lake waters, although a future potential hazard of metals bioaccumulation by the aquatic biota must be taken into consideration. Finally, a water balance for the basin shows that a drop in precipitation of about 20% might be critical for lake survival.

Keywords

wetland area hydrogeochemistry environmental geochemistry isotope geochemistry water balance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayalon, A., Bar-Matthews, M., & Sass, E. (1998). Rainfall–recharge relationships within a karstic terrain in the eastern Mediterranean semi-arid region, Israel: δ18O and δD characteristics. Journal of Hydrolology, 207, 18–31.CrossRefGoogle Scholar
  2. Ball, J. W., & Nordstrom, D. K. (1991). User’s manual for WATEQ4F, with revised thermodynamic data base and test cases for calculation speciation of major, trace, and redox elements in natural waters, US Geological Survey, Open File Report 91–193, 189.Google Scholar
  3. Beneo, E. (1949). Sul “Microdiapiro” di Leonforte e su quelli a Nord di Gela (Sicilia Centrale e Meridionale). Rend. Acc. Lincei., 7(1–4), 108–113.Google Scholar
  4. Butler, R. W. H., Grasso, M., & Lickorish, H. (1995a). Plio-quaternary megasequence geometry and its tectonic control within the Maghrebian thrust belt of south-central Sicily. Terra Nova, 7, 171–178.CrossRefGoogle Scholar
  5. Butler, R. W. H., Lickorish, W. H., Grasso, M., Pedley, H. M., & Ramberti, L. (1995b). Tectonics and sequence stratigraphy in Messinian basins, Sicily: Constraints on the initiation and termination of the Mediterranean salinity crisis. Geological Society of American Bulletin, 107, 425–439.CrossRefGoogle Scholar
  6. Butler, R. W. H., McClelland, E., & Jones, R. E. (1999). Calibrating the duration and timing of the Messinian salinity crisis in the Mediterranean: Linked tectonoclimatic signals in thrust-top basins of Sicily. Journal of the Geological Society (London), 56, 827–835.Google Scholar
  7. Craig, H., & Gordon, L. I. (1965). Deuterium and oxygen-18 variations in the ocean and marine atmosphere. In E. Tongiorgi (Ed.), Stable Isotopes in Oceanographic Studies and Paleo-Temperatures, Pisa (pp. 9–130). Lab. Geol. Nucl.Google Scholar
  8. De Martonne, E. (1926). Une nouvelle function climatologique: L’indice d’ariditè. Meterologie, 2, 449–459.Google Scholar
  9. Gat, J. R., & Carmi, I. (1970). Evolution of the isotopic composition of atmospheric water in the Mediterranean Sea area. Journal of Geophysical Research, 75, 3039–3048.CrossRefGoogle Scholar
  10. Gonfiantini, R. (1986). Environmental isotopes in lake studies. In P. Fritz & J. Ch. Fontes (Eds.), Hanbook of Environmental Isotopes Geochemistry, vol. 2, B (pp. 113–168), Amsterdam: Elsevier.Google Scholar
  11. Grassa, F. (2002). Geochemical processes governing the chemistry of groundwater hosted within the Hyblean aquifers (South-Eastern Sicily, Italy). Ph.D. thesis, Dipartimento di Chimica e Fisica della Terra (CFTA), University of Palermo, 80 pp.Google Scholar
  12. GreenStream, S. P. A. (2003). Progetto di realizzazione del metanodotto di importazione dalla Libia. Procedura VIA. Piano di gestione monitoraggio e di ricerca dell'area SIC “Biviere e Macconi di Gela” e riqualificazione dell’ambito dunale, pp. 465.Google Scholar
  13. Gazzetta Ufficiale della Repubbica Italiana (GURI) (1999). Decreto Ministeriale 25 ottobre 1999, n. 471 Regolamento recante criteri, procedure e modalità per la messa in sicurezza, la bonifica e il ripristino ambientale dei siti inquinati, ai sensi dell’articolo 17 del decreto legislativo 5 febbraio 1997, n. 22, e successive modificazioni e integrazioni.Google Scholar
  14. Gazzetta Ufficiale della Repubbica Italiana (GURI) (2004). Decreto Ministeriale 6 novembre 2003, n° 367. Regolamento concernente la fissazione di standard di qualità nell’ambiente acquatico per le sostanze pericolose, ai sensi dell’articolo 3, comma 4, del decreto legislativo 11 maggio 1999, n. 152. Ministero dell’Ambiente e della Tutela del Territorio, Roma, 08 Gennaio 2004, 5, 17–29.Google Scholar
  15. ISTAT (2000). Censimento generale dell’agricoltura, http://www.istat.it.
  16. Jouzel, J. (1986). Isotopes in cloud physics: Multiphase and multistage condensation processes. Handbook of Enviromental Isotopes Geochemistry, 2, 61–112.Google Scholar
  17. Langelier, W. F., & Ludwig, F. (1942). Graphical methods for indicating the mineral character of natural waters. Journal of the American Water Works Association, 34, 335–352.Google Scholar
  18. Long, E. R., MacDonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19(1), 81–97.CrossRefGoogle Scholar
  19. Pedley, H., & Grasso, M. (1991). Sea-level change around the margins of Catania-Gela through and Hyblean Plateau, southeast Sicily (African–European plate convergence zone): A problem of Plio-Quaternary plate buoyancy. Special Publication of the International Association of Sedimentologists, 12, 451–464.Google Scholar
  20. Roda, C. (1966). Nuove conoscenze sulla trasgressione mediopliocenica. Bollettino dell’Accademia Gioenia di Scienze Naturali, 8, 705–716.Google Scholar
  21. Rozanski, K., Araguas-Araguas, L., & Gonfiantini, R. (1993). Isotopic patterns in modern global precipitation. In P. K. Swart, K. C. Lohmann, J. McKenzie, & S. Savin (Eds.), Climate Change in Continental Isotopic Records (pp. 1–36), Geophysical Monograph 78, American Geophysical Union.Google Scholar
  22. Servizio Idrografico del Genio Civile. Annali idrologici Parte II, Regione Siciliana Ed. Palermo, (1980–2000) http://www.uirsicilia.it/.
  23. Tennant, C. B., & White, M. L. (1959). Study of the distribution of some geochemical data. Economic Geology, 54, 1281–1290.CrossRefGoogle Scholar
  24. Thornthwaite, C. W. (1948). An approach towards a rational classification of climate. Geographical Review, 38, 85–94.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  • Emanuela Manno
    • 1
  • Massimo Vassallo
    • 1
  • Daniela Varrica
    • 1
  • Gaetano Dongarrà
    • 1
  • Sergio Hauser
    • 1
  1. 1.Dipartimento di Chimica e Fisica della Terra (C.F.T.A.)Università di PalermoPalermoItaly

Personalised recommendations