Skip to main content
Log in

Survival of various ERIC-genotypes of Shiga toxin-producing Escherichia coli in well water

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Recently, there has been a surge of interest in understanding the survival of Shiga toxin-producing Escherichia coli (STEC) in aquatic environments. Fifteen strains of STEC were monitored, individually, in untreated well water samples incubated at 10 and 22^C for 56 days. The strains were selected from three serogroups (O26, Ol11 and O157) and represented five distinct ERIC (enterobacterial repetitive intergenic concensus)-genotypes. The microcosms were prepared in triplicate and inoculated at an initial cell density of about 7.0 log CFU/ml well water. At 10^C, the cell density of five STEC strains fell below the detection limit of 0.8 log CFU/ml by day 56. Of the ten persisting strains, four showed superior survival with cell densities decreasing to an average of about 5 log CFU/ml while the remaining six strains showed moderate levels of survival, decreasing to an average cell density of about 3 log CFU/ml. At 22^C, strain H32 (genotype I) and H15 (genotype B) persisted at 1.1 log CFU/ml and 2.2 log CFU/ml in 56 days, respectively. The other 13 STEC strains dropped below the detection limit between weeks 3 to 8. The 15 strains demonstrated highly variable levels of survival with no correlation between ERIC-genotypes or serogroups and the strains' ability to persist in the well water samples. Although strain H32 (O157:H7) persisted significantly longer than strain H22 (O157:H7) in natural well water at both 10 and 22^C, both strains survived equally well in sterile well water, indicating that individual STEC strains vary in their ability to compete with background microbial populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackman, D., Marks, S., Mack, P., Caldwell, M., Root, T., & Birkhead, G. (1997). Swimming-associated haemorrhagic colitis due to Escherichia coli O157:H7 infection: evidence of prolonged contamination of a fresh water lake. Epidemiol. Infect., 119, 1–8.

    Google Scholar 

  • Adwan, K., Abu-Hasen, N., Essawi, T., & Bdir, M. (2002). Isolation and characterisation of shiga toxigenic Escherichia coli strains from northern Palestine. J. Med. Microbiol., 51, 332–335.

    Google Scholar 

  • American Public Health Association. (1998). Standard methods for the examination of water and wastewater. 20th ed. American Public Health Association, Washington, B.C.

  • Artz, R.R.E. & Killham, K. (2002). Survival of Escherichia coli O157:H7 in private drinking water wells: influences of protozoan grazing and elevated copper concentrations. FEMSMicrobiol. Lett., 216, 117–122.

    Google Scholar 

  • Brettar, I. & Hofle, M.G. (1992). Influence of ecosystematic factors on survival of Escherichia coli after large-scale release into lake water mesocosms. Appl. Environ. Microbiol., 58, 2201–2210.

    Google Scholar 

  • Bruce-Grey-Owen Sound Health Unit. (2000). The Investigative Report of the Walkerton Outbreak of Waterborne Gastroenteritis.’ Available: http://www.publichealthgreybruce.on.ca/_privateAValkerton/SPWalkerton.htm

  • Carson, C.A., Shear, B.L., Ellersieck, M.R. & Asfaw, A. (2001). Identification of fecal Escherichia coli from humans and animals by ribotyping. Appl. Environ. Microbiol., 67, 1503–1507.

    Google Scholar 

  • Carvalho de Moura, A., Irino, K. & Vidotto, M.C. (2001). Genetic variability of avian Escherichia coli strains evaluated by enterobacterial repetitive intergenic consensus and repetitive extragenic palindromic polymerase chain reaction. Avian Dis., 45, 173–181.

    Google Scholar 

  • Dodd, C., Sharman, R.L., Bloomfield, S.F., Booth, I.R. & Stewart, G. (1997). Inimical process: Bacterial self-destruction and sub-lethal injury. Trends Food Sci. Technol., 8, 238–241.

    Google Scholar 

  • Dombek, P.E., Johnson, L.K., Zimmerley, S.T. & Sadowsky, M.J. (2000). Use of repetitive DNA sequences and polymerase chain reaction to differentiate Escherichia coli from human and animal sources. Appl. Environ. Microbiol., 66, 2572–2577.

    Google Scholar 

  • Finkel, S.E., Zinser, E.R. & Kolter, R. (2000) Long-term survival and evolution in the stationary phase. In G. Storz and R. Hengge-Aronis (ed.), Bacterial stress responses (pp. 231–238). ASM Press, Washington, D.C.

  • Foppen, J.W.A. & Schijven, J.F. (2006). Evaluation of data from the literature on the transport and survival of Escherichia coli and thermotolerant coliforms in aquifers under saturated conditions. Water Res., 40, 401–426.

    Google Scholar 

  • Geldreich, E.E., Fox, K.R., Goodrich, J.A., Rice, E.A., Clark, R.M. & Swerdlow, D.I. (1992). Searching for a water supply connection in the Cabool, Missouri disease outbreak of Escherichia coli Ol57:W7. Water Res., 26, 1127–1137.

  • Guan, S., Xu, R., Chen, S., Odumeru, J. & Gyles, C. (2002). Development of a procedure for discriminating among Escherichia coli isolates from animal and human sources. Appl. Environ. Microbiol., 68, 2690–2698.

    Google Scholar 

  • Gyles, C., Johnson, R., Gao, A., Ziebell, K., Pierard, D., Stojanka, A. & Boerlin, P. (1998). Association of enterohemorrhagic Escherichia coli hemolysin with serotypes of Shiga-like toxin-producing Escherichia coli of human and bovine origins. Appl. Environ. Microbiol., 64, 4134–4141.

    Google Scholar 

  • Kaysner, C.A., Jinneman, K.C., Trost, P.A., Abeyta, C., Hill, W.E. & Wekell, M.M. (1994). Survival of Escherichia coli O157:H7 in aquatic and estuarine conditions. p. 3 83, P-83. Abstr. 94th Gen. Meet. Am. Soc. Microbiol. 1994. American Society for Microbiology, Washington, D.C.

  • Kerr, M., Fitzgerald, M., Sheridan, J.J., McDowell, D.A. & Blair, I.S. (1999). Survival of Escherichia coli O157:H7 in bottled natural mineral water. J. Appl. Microbiol., 87, 833-841.

  • Leung, K.T., Mackereth, R., Tien, Y.C. & Topp, E. (2004). A comparison of AFLP and ERIC-PCR analyses for discriminating Escherichia coli from cattle, pig, and human sources. FEMSMicrobiol. Ecol., 47, 111–119.

    Google Scholar 

  • Maule, A. (2000). Survival of verocytotoxigenic Escherichia coli 0157 in soil, water and on surfaces. J. Appl. Microbiol. Symp. Suppl., 88, 71S–78S.

    Google Scholar 

  • McFeters, G.A. & Stuart, D.G. (1972). Survival of coliform bacteria in natural water: field and laboratory studies with membrane-filter chambers. Appl. Microbiol., 24, 805-811.

    Google Scholar 

  • McLellan, S.L., Daniels, A.D. & Salmore, A.K. (2003). Genetic characterization of Escherichia coli populations from host sources of fecal pollution by using DNA fingerprinting’ Appli. Environ. Microbiol., 69, 2587–2594.

    Google Scholar 

  • Osek, J. (2000). Virulence factors and genetic relatedness of Escherichia coli strains isolated from pigs with post-weaning diarrhea. Vet. Microbiol., 71, 211-222.

    Google Scholar 

  • Ozkanca, R. & Flint, K.P. (1997). Relationship between respiratory enzymes and survival of Escherichia coli under starvation stress in lake water. J. Appl. Microbiol., 82, 301–309.

    Google Scholar 

  • Parveen, S.K., Portier, K.M., Robinson, K., Edmiston, L. & Tamplin, M.L. (1999). Discriminant analysis of ribotype profiles of Escherichia coli for differentiating human and nonhuman sources of fecal pollution. Appl. Environ. Microbiol., 65, 3142–3147.

    Google Scholar 

  • Rasmussen, M.A. & Casey, T.A. (2001). Environmental and food safety aspects of Escherichia coli O157:H7 infections in cattle. Crit. Rev. Microbiol., 27, 57–73.

    Google Scholar 

  • Rice, E.W., Johnson, C.W., Wild, D.K. & Reasoner, D.J. (1992). Survival of Escherichia coli O157:H7 in drinking water associated with a waterborne disease outbreak of hemorrhagic colitis. Lett. Appl. Microbiol., 15, 38–40.

    Google Scholar 

  • Rigsbee, W., Simpson, L.M. & Oliver, J.D. (1997). Detection of the viable but nonculturable state in Escherichia coli O157:H7. J. Food Safety, 16, 255–262.

    Google Scholar 

  • Robey, M., Benito, A., Hutson, R.H., Pascual, C., Park, S.F. & Mackey, B.M. (2001). Variation in resistance to high hydrostatic pressure and rpoS heterogeneity in natural isolates of Escherichia coli O157:H7. Appl. Environ. Microbiol., 67, 4901–4907.

    Google Scholar 

  • Selander, R.K., Caught, D.A. & Whittam, T.S. (1987). Genetic structure and variation in natural populations of Escherichia coli. In: Neidhardt, F.C., (Ed.), Escherichia coli and Salmonella: cellular and molecular biology, (vol. 2, pp. 1625–1648). American Society for Microbiology, Washington, D.C.

  • Swerdlow, D.L., Woodruff, B.A., Brady, R.C., Griffin, P.M., Tippin, S., Donnell, Jr., D., Geldreich, E., Payne, B.J., Meyer, Jr., A., Wells, J.G., Greene, K.D., Bright, M., Bean, N.H. & Blake, P.A. (1992). A waterborne outbreak in Missouri of Escherichia coli O157:H7 associated with bloody diarrhea and death. Ann. Intern. Med., 117, 812–819.

    Google Scholar 

  • Topp, E., Welsh, M., Tien, Y.-C., Dang, A., Lazarovits, G., Conn, K. & Zhu, H. (2003). Strain-dependent variability in growth and survival of Escherichia coli in agricultural soil. FEMSMicrobiol. Ecol., 1505, 1–6.

  • Valcour, J.E., Pascal, M., McEwan, S.A. & Wilson, J.B. (2002). Association between indicators of livestock farming intensity and incidence of human shiga toxin-producing Escherichia coli infection. Emerg. Infect. Dis., 8, 252–257.

    Google Scholar 

  • Wang, G. & Doyle, M.P. (1998). Survival of enterohemorrhagic Escherichia coli O157:H7 in water. J. Food Prot., 61, 662–667.

    Google Scholar 

  • Warburton, D.W., Austin, J.W., Harrison, B.H., Sanders, G. (1998). Survival & recovery of Escherichia coli O157:H7 in inoculated bottled water. J. Food Prot., 61, 948–952.

    Google Scholar 

  • Watermann, S.R. & Small, P.L.C. (1996). Characterization of acid resistance phenotype and rpoS alleles of Shiga-like toxin-producing Escherichia coli. Infect. Immun., 64, 2808–2811.

    Google Scholar 

  • Williams, M.M. & Braun-Howland, E.B. (2003). Growth of Escherichia coli in model distribution system biofilms exposed to hypochlorous acid or monochloramine. Appl. Environ. Microbiol., 69, 5463–5271.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kam Tin Leung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watterworth, L., Rosa, B., Schraft, H. et al. Survival of various ERIC-genotypes of Shiga toxin-producing Escherichia coli in well water. Water Air Soil Pollut 177, 367–382 (2006). https://doi.org/10.1007/s11270-006-9179-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-006-9179-x

Keywords

Navigation