Skip to main content
Log in

Electrokinetic Copper and Iron Migration in Anaerobic Granular Sludge

  • Original Article
  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The application of low-level direct electric current (0.15 mA cm−2) as an electrokinetic technique to treat copper-contaminated mesophilic anaerobic granular sludge was investigated. The sludge was obtained from a full scale UASB reactor treating paper-mill wastewater and was artificially contaminated by Cu(NO3)2 or CuEDTA2− with initial copper concentrations of 1000 mg . kg−1 wet sludge. The effect of different electrokinetic cell layouts, pH and EDTA concentrations on the migration of copper and iron during electrokinetic treatment were evaluated. Both, the pH of the sludge cake or the copper complexation with EDTA significantly affected the migration direction of copper. In an ‘open’ cell (sludge cake in direct contact with air), the highest copper mobility was observed at pH 2.5 in both Cu(NO3)2 or CuEDTA2− amended sludge. The highest copper accumulation was at the cathode (22 ± 2)% with CuEDTA2− as contaminant. In a ‘closed’ cell (sludge cake not in contact with air), the highest accumulation was obtained for CuEDTA2− at the anode and amounted to 4(± 0.5)% and 2(± 0.05)%, respectively, at a final pH of 4.2 and 7.7 in the sludge cake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramovitch, R.A., Qing, L.C., Hicks, E., & Sinard, J. (2003). In situ remediation of soils contaminated with toxic metal ions using microwave energy. Chemopshere, 53, 1077–1085.

    Article  CAS  Google Scholar 

  • Acar, Y.B., & Alshawabkeh, A.N. (1996). Electrokinetic remediation: I. Pilot Scale Tests with Lead-spiked Kaolinite. Journal of Geotechnical Engineering, 122, 173–185.

    Article  CAS  Google Scholar 

  • Acar, Y.B., & Alshawabkeh, A.N. (1993). Principles of electrokinetic remediation. Environmental Science and Technology, 27, 2638–2647.

    Article  CAS  Google Scholar 

  • Alloway, B.J. (1995). Heavy metals in soils (2nd ed.). London, England: Chapman and Hall.

    Google Scholar 

  • Alshawabkeh, A.N., Yeung, A.T., & Bricka, R.M. (1999). Practical aspects of In situ Electrokinetic Extraction. Journal of Environmental Engineering, 125, 27–35.

    Article  CAS  Google Scholar 

  • Bolan, N.S., Khan, M.A., Donaldson, J., Adriano, D.C., & Matthew, C. (2003). Distribution and bioavailability of copper in farm effluent. Science of Total Environment, 309, 225–236.

    Article  CAS  Google Scholar 

  • Dijkstra, E. (1998). A morphological study on the development of humus profiles in heavy metal polluted and non-polluted forest soils under Scots pine. Geoderma, 61, 4495–4505.

    Google Scholar 

  • Dobermann, A., & Fairhurst, T. (2000). Rice. Nutrient disorders & nutrient management. Potash & Phosphate Institute (PPI), Potash & Phosphate Institute of Canada (PPIC) and International Rice Research Institute.

  • Emery, T. (1991). Iron and your health: Facts and fallacies. CRC Press Inc.

  • Fjällborg, B., & Dave, G. (2003). Toxicity of copper in sewage sludge. Environment International, 28, 761–769.

    Article  CAS  Google Scholar 

  • Haran, B.S., Popov, B.N., Zheng, G., & White, R.E. (1996). Development of a new electrokinetic technique for decontamination of hexavalent chromium from low surface charged soils. Environmental Progress, 15, 166–172.

    CAS  Google Scholar 

  • Hashimoto, S., Watanabe, K., Nose, K., & Morita, M. (2004). Remediation of soil contaminated with dioxins by subcritical water extraction. Chemosphere, 54, 89–96.

    Article  CAS  Google Scholar 

  • Hernandez, L., Probst, A., Probst, J.L., & Ulrich, E. (2003). Heavy metal distribution in some French forest soils: evidence for atmospheric contamination. Science of Total Environment, 312, 195–219.

    Article  CAS  Google Scholar 

  • Hulshoff Pol, L.W., de Castro Lopes, S.I., Lettinga, G., & Lens, P.N.L. (2004). Anaerobic sludge granulation. Water Research, 38, 1376–1389.

    Article  CAS  Google Scholar 

  • Ito, A., Umita, T., Aizawa, J., Takachi, T., & Morinaga, K. (2000). Removal of heavy metals from anaerobically digested sewage sludge by a new chemical method using ferric sulfate. Water Research, 34, 751–758.

    Article  CAS  Google Scholar 

  • Kari, F.G., Giger, W. (1996). Speciation and fate of ethylenediamintetraacetate (EDTA) in municipal wastewater treatment. Water Research, 30, 122–134.

    Article  CAS  Google Scholar 

  • Kim, W.S., Kim S.O., & Kim K.W. (2005). Enhanced electrokinetic extraction of heavy metals from soils assisted by ion exchange membranes. Journal of Hazardous Materials, B118, 93–102.

    Article  CAS  Google Scholar 

  • Kim, S.-O., Moon, S.-H., Kim, K.-W., & Yun, S.-T. (2002). Pilot scale study on the ex situ electrokinetic removal of heavy metals from municipal wastewater sludges. Water Research, 36, 4765–4774.

    Article  CAS  Google Scholar 

  • Lee, H.H., & Yang, J.W. (2000). A new method to control electrolytes by pH by circulation system in electrokinetic soil remediation. Journal of Hazardous Materials, B77, 227–240.

    Article  Google Scholar 

  • Lens, P., Vergeldt, F., Lettinga, G., & van As, H. (1999). 1H-NMR study of the diffusional properties of methanogenic aggregates. Water Science and Technology, 39, 187–194.

    Article  CAS  Google Scholar 

  • Li, Z., Yu, J.W., & Neretnieks I. (1997). Removal of Pb(II), Cd(II) and Cr(III) from sand by electromigration. Journal of Hazardous Materials, 55, 295–304.

    Article  CAS  Google Scholar 

  • Lin, C.Y., & Chen, C.C. (1999). Effect of heavy metals on the methanogenic UASB granule. Water Research, 33, 409–416.

    Article  CAS  Google Scholar 

  • Maini, G., Sharman, A.K., Sunderland, G., Knowles, C.J., & Jackman, S. (2000). An integrated method incorporating Sulfur-oxidizing bacteria and electrokinetics to enhance removal of copper from contaminated soil. Environmental Science and Technology, 34, 1081–1087.

    Article  CAS  Google Scholar 

  • Mercer, J.F.B. (2001). The molecular basis of copper-transport diseases. Trends in Molecular Medicine, 7, 64–69.

    Article  CAS  Google Scholar 

  • Mattson, E.D., & Lindgren, E.R. (1995). Electrokinetic Extraction of Chromate from Unsaturated Soils. American Chemical Society, 11–20.

  • Mohammadi, T., Moheb, A., Sadrzadeh, M., & Razmi, A. (2005). Modelling of metal ion removal from wastewater by electrodialysis. Separation and Purification Technology, 41, 73–82.

    Article  CAS  Google Scholar 

  • Mulligan, C.N., & Yong, N. (2004). Natural attenuation of contaminated soils. Environment International, 30, 587–601.

    Article  CAS  Google Scholar 

  • Nowack B. (2002). Environmental chemistry of Aminopolycarboxylate chelating agents. Environmental Science and Technology, 36, 4009–4016.

    Article  CAS  Google Scholar 

  • Osuna, M.B., Zandvoort, M.H., Iza, J., & Lens, P.N.L. (2004). Effect of cobalt sorption on metal speciation in anaerobic granular sludge. Journal of Environmental Quality, 33, 1256–1270.

    Article  CAS  Google Scholar 

  • Ottosen, L.M., Eriksson, T., Hansen, H.K., & Ribeiro, A.B. (2002). Effects from different types of construction refuse in the soil on electrokinetic remediation. J. Haz. Mater., 91, 205–219.

    Article  CAS  Google Scholar 

  • Ottosen, L.M., & Hansen, H.K. (1992). Electrokinetic cleaning of heavy metal polluted soil. Internal report, Fysisk-Kemisk Institut and Institut for Geologi og Geoteknik. Denmark: Technical University of Denmark, (in English).

    Google Scholar 

  • Popov, K., Yachmenev, V., Kolosov, A., & Shabanova, N. (1999). Effect of soil electroosmotic flow enhancement by chelating reagents. Colloids and Surfaces. A: Physicochem. Engineering Aspects, 160, 135–140.

    Article  CAS  Google Scholar 

  • Reddy, K.R., & Chinthamreddy, S. (2003). Effects of initial form of chromium on electrokinetic remediation in clays. Adv. Environ. Res., 7, 353–365.

    Article  CAS  Google Scholar 

  • Reddy, K.R., Parupudi, U.S., Devulapalli, S.N., &.Xu, Y. (1997). Effect of soil composition on the removal of chromium by electrokinetics. Journal of Hazardous Materials, 55, 135–158.

    Article  CAS  Google Scholar 

  • Sah, J.G., & Chen J.Y. (1998). Study of the electrokinetic process on Cd and Pb spiked soils. Journal of Hazardous Materials, 58, 301–315.

    Article  CAS  Google Scholar 

  • Segura, M., Cámara, C., Madrid, Y., Rebollo, C., Azcárate, J., Kramer, G.N., Gawlik, B.M., Lamberty, A., & Quevauville, Ph. (2004). Certified reference materials (CRMs) for quality control of trace-element determinations in wastewater. TrAC Trends in Analytical Chemistry, 23, 194–202.

    Article  CAS  Google Scholar 

  • Sillanpää, M., Orama, M., Rämö, J., & Oikari, A. (2001). The importance of ligand speciation in environmental research: a case study. Science of Total Environment, 267, 23–31.

    Article  Google Scholar 

  • Sheppard, D.S., Claridge, G.G.C., & Campbell, I.B. (2000). Metal contamination of soils at Scott base, Antarctica. Applied Geochemistry, 15, 513–530.

    Article  CAS  Google Scholar 

  • Straub, K.L., Benz, M., & Schink, B. (2001). Iron metabolism in anoxic environments at near neutral pH. Mini review. FEMS Microbiology Ecology, 34, 181–186.

    Article  CAS  Google Scholar 

  • Turer, D., & Genc A. (2005). Assessing effect of electrode configuration on the efficiency of electrokinetic remediation by sequential extraction analysis. Journal of Hazardous Materials, B119, 167–174.

    Article  CAS  Google Scholar 

  • Van Cauwenberghe, L. (1997). Electrokinetics: Technology Overview Report. Groundwater Remediation Technologies Analysis Centre, 1–17.

  • van Hullebusch, E.D., Utomo, S., Zandvoort, M.H., & Lens, P.N.L. (2005). Comparison of three sequential extraction procedures to describe metal fractionation in anaerobic granular sludges. Talanta, 65, 549–558.

    Article  CAS  Google Scholar 

  • Velizarova, E., Ribeiro, A.B., Mateus, E., & Ottosen, L.M. (2004). Effect of different extracting solutions on the electrodialytic remediation of CCA-treated wood waste Part I. Behaviour of Cu and Cr. Journal of Hazardous Materials, B107, 103–113.

    Article  CAS  Google Scholar 

  • Velizarova, E., Ribeiro, A.B., & Ottosen, L.M. (2002). A comparative study on Cu, Cr and As removal from CCA-treated wood waste by dialytic and electrokinetic processes. Journal of Hazardous Materials, 94, 147–160.

    Article  CAS  Google Scholar 

  • Virkutyte J., Sillanpää, M., Latostenmaa, P., & Martisius, J. (2004). Electrokinetic copper removal from lake sand: the process design and kinetics. International Journal of Surf. Mining, Reclam. Environ., 18, 220–231.

    Article  CAS  Google Scholar 

  • Virkutyte, J., van Hullebusch E., Sillanpää, M., & Lens, P. (2005). Copper and trace element fractionation in electrokinetically treated methanogenic anaerobic granular sludge. Environmental Pollution, 138, 518–529.

    Article  CAS  Google Scholar 

  • Wieczorek, S., Weigand H., Schmid M., & Marb C. (2005). Electrokinetic remediation of an electroplating site: design and scale-up for an in-situ application in the unsaturated zone. Engineering Geologists, 77, 203–215.

    Article  Google Scholar 

  • Yeung, A., Hsiu, C., & Menon, R.M. (1997). Physicochemical soil—contaminant interactions during electrokinetic extraction. Journal of Hazardous Materials, 55, 221– 237.

    Article  CAS  Google Scholar 

  • Yuan, C., & Weng, C.-H. (2003). Sludge dewatering by electrokinetic technique: effect of processing time and potential gradient. Advances in Environmental Research, 7, 727–732.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piet Lens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Virkutyte, J., Sillanpää, M. & Lens, P. Electrokinetic Copper and Iron Migration in Anaerobic Granular Sludge. Water Air Soil Pollut 177, 147–168 (2006). https://doi.org/10.1007/s11270-006-9129-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-006-9129-7

Keywords

Navigation