Skip to main content
Log in

Extractable iron and organic matter in the suspended insoluble material of fog droplets

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

In this work the formation and composition of aggregates between metals and organic material is studied in real fog samples. In a preliminary experiment it has been found that concentrated cloud samples form a yellow-brown precipitate in the presence of Fe(III). Standards of humic acids and fulvic acids co-precipitate with Fe(III), forming similar aggregates i.e. iron-humates (Fe-HA) and iron-fulvates (Fe-FA). By comparing the solubility properties of aggregates by extracting organic carbon (OC) in different pH conditions, it has been observed that fog droplet particulate samples are characterised by solubility properties more similar to those of Fe-HA than Fe-FA. Dilute alkaline solutions can also easily extract organic refractory substances that form aggregates with metals. The recoveries of the total extractable organic matter (accounting for 12% of total insoluble carbon and 15% of particulate mass) are similar to those of humic-like substances (HULIS) from particulate samples. The chromatographic behaviour and functional group characteristics measured in the alkali-extract fraction of precipitated aggregates with iron and in the insoluble particulate of fog samples, are those of humic-like material. Thus, soluble HULIS are able to interact with iron to form particulate, but the composition of a large fraction of insoluble organic carbon is still unknown. These findings have implications on the solubility and surface tension properties of fog droplets and can therefore potentially influence droplet formation, as well as cloud chemical and photochemical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiken, G.R., McKnight, D.M., Wershaw, R.L.,&MacCarthy, P. (1985). Humic substances in soils, sediments and water: geochemistry, isolation and characterization (pp. 345–362). New York: John Wiley&Sons.

    Google Scholar 

  • Boyle, E.A., Edmond, J.M.&Sholkovitz, E.R. (1977). The mechanism of iron removal in estuaries. Geochimica et Cosmochimica Acta, 41, 1313–1324.

    Article  CAS  Google Scholar 

  • Decesari, S., Facchini, M.C., Fuzzi, S.,&Tagliavini, E. (2000). Characterization of water-soluble organic compounds in atmospheric aerosol: A new approach. Journal of the Geophysical Research, 105, 1481–1489.

    Article  CAS  Google Scholar 

  • Decesari, S., Facchini, M.C., Matta, E., Lettini, F., Mircea, M., Fuzzi, S., Tagliavini, E.,&Putaud, J.-P. (2001). Chemical features and seasonal variation of fine aerosol water-soluble organic compounds in the Po Valley, Italy. Atmospheric Environment, 35, 3691–3699.

    Article  CAS  Google Scholar 

  • Facchini, M.C., Decesari, S., Mircea, M., Fuzzi, S.,&Loglio, G. (2000). Surface tension of atmospheric wet aerosol and cloud/fog droplets in relation to their organic carbon content and chemical composition. Atmospheric Environment, 34, 4853–4857.

    Article  CAS  Google Scholar 

  • Facchini, M.C., Fuzzi, S., Zappoli, S., Andracchio, A., Gelencsér, A., Kiss, G., Krivácsy, Z., Mészaros, E., Hansson, H.-C., Alsberg, T.,&Zebühr, Y. (1999a). Partitioning of the organic aerosol component between fog droplets and interstitial air. Journal of the Geophysical Research, 104, 26,821–26,832.

    CAS  Google Scholar 

  • Facchini, M.C., Mircea, M., Fuzzi, S.,&Charlson, R.J. (1999b). Cloud albedo enhancement by surface-active organic solutes in growing droplets. Nature, 401, 257–259.

    Article  CAS  Google Scholar 

  • Fuzzi, S., Orsi, G., Bonforte, G., Zardini, B.,&Franchini, P.L. (1997). An automated fog water collector suitable for deposition networks: design, operation and field tests. Water, Air Soil Pollution, 93, 383–394.

    Article  CAS  Google Scholar 

  • Gao, H.,&Zepp, R.G. (1998). Factors influencing photoreactions of dissolved organic matter in a coastal river of the southeastern United States. Environmental Science Technology, 32, 2940–2946.

    Article  CAS  Google Scholar 

  • Gelencsér, A., Sallai, M., Krivácsy, Z., Kiss, G.,&Mészaros, E. (2000). Voltammetric evidence for the presence of humic-like substances in fog water. Atmospheric Research, 54, 157–165.

    Article  Google Scholar 

  • Geoffrey, D., Ghabbour, E.A., Khairy, K.A. (1998). Humic substances: structures, properties and uses (pp. 1–28). Great Britain: Cambridge Royal Society of Chemistry.

    Google Scholar 

  • Havers, N., Burba, P., Klockow, D.,&Klockow-Beck, A. (1998a). Characterization of humic-like substances in airborne particulate matter by capillary electrophoresis. Chromatographia, 47, 619–624.

    CAS  Google Scholar 

  • Havers, N., Burba, P., Lambert, J.,&Klockow, D. (1998b). Spectroscopic characterization of humic-like substances in airborne particulate matter. Journal of Atmospheric. Chemistry, 29, 45–54.

    Article  CAS  Google Scholar 

  • Hoffmann, P., Dedik, A.N., Deutsch, F., Sinner, T., Weber, S., Eichler, R., Sterkel, S., Sastri, C.S.,&Ortner, H. M. (1997). Solubility of single chemical compounds from an atmospheric aerosol in pure water. Atmospheric Environment, 31, 2777–2785.

    Article  CAS  Google Scholar 

  • Hoffmann, P., Dedik, A.N., Ensling, J., Weinbruch, S., Weber, S., Sinner, T., Gütlich, P.,&Ortner, H.M. (1996). Speciation of iron in atmospheric aerosol samples. Journal of Aerosol Science, 27, 325–337.

    Article  CAS  Google Scholar 

  • Kiss, G., Tombácz, E.,&Hansson, H.-C. (2005). Surface tension effects of humic-like substances in the aqueous extracts of tropospheric fine aerosol. Journal of the Atmospheric Chemistry, 50, 279–294.

    Article  CAS  Google Scholar 

  • Kiss, G., Varga, B., Galambos, I.,&Ganszky, I. (2002). Characterization of water-soluble organic matter isolated from atmospheric fine aerosol. Journal of the Geophysical Research, 107, doi: 10.1029/2001JD000603

  • Krivácsy, Z., Gelencsér, A., Kiss, G., Mészáros, E., Molnár, á., Hoffer, A., Mészáros, T., Sárvári, Zs., Temesi, D., Varga, B., Baltensperger, U., Nyeki, S.,&Wiengartner, E. (2001). Study on the chemical character of water soluble organic compounds in fine atmospheric aerosol at the Jungfraujoch. Journal of the Atmospheric Chemistry, 39, 235–259.

    Article  Google Scholar 

  • Krivácsy, Z., Kiss, G., Varga, B., Galambos, I., Sárvári, Zs., Gelencsér, A., Molnár, Á., Fuzzi, S., Facchini, M.C., Zappoli, S., Andracchio, A., Alsberg, T., Hansson, H.-C.,&Persson, L. (2000). Study of humic-like substances in fog and interstitial aerosol by size-exclusion chromatography and capillary electrophoresis. Atmospheric Environment, 34, 4273–4281.

    Article  Google Scholar 

  • Kunit, M.,&Puxbaum, H. (1996). Enzymatic determination of the cellulose content of atmospheric aerosols. Atmospheric Environment, 30, 1233–1236.

    Article  CAS  Google Scholar 

  • Lu, X., Chen, Z.,&Yang, X. (1999). Spectroscopic study of aluminium speciation in removing humic substances by Al speciation. Water Reseach, 33, 3271–3280.

    Article  CAS  Google Scholar 

  • Mancinelli, V., Decesari, S., Facchini, M.C., Fuzzi, S.,&Mangani, F. (2005). Partitioning of metals between the aqueous phase and suspended insoluble material in fog droplets. Annals Chemistry-Rome, 95, 275–290.

    CAS  Google Scholar 

  • McKnight, D.M.,&Wershaw, R.L. (1989). Complexation of copper by fulvic acid from the suwannee river—effect of counter-ion concentration. In R. C. Averett, J. A. Leenheer, D. M. McKnight,&K. A. Thorn (Eds.), Humic substances in the Suwannee river, Georgia: interactions, properties, and proposed structures (pp. 63–79). Denver: U.S. Geological Survey.

    Google Scholar 

  • Mukai, H.,&Ambe, Y. (1986). Characterization of a humic acid-like brown substances in airborne particulate matter and tentative identification of its origin. Atmospheric Environment, 20, 813–819.

    Article  CAS  Google Scholar 

  • Nenes, A., Charlson, R., Facchini, M.C., Kulmala, M.,&Laaksonen, A. (2002). Can chemical effects on cloud droplet number rival the first indirect effect? Geophysical Research Letters, 29(17), 1848, doi 10.1029/2002GL015295

    Article  Google Scholar 

  • Putaud, J.-P., Van Dingenen, R., Mangoni, M., Virkkula, A., Raes, F., Maring, H., Prospero, J.M., Swietlicki, E., Berg, O.H., Hillamo, R.,&Mäkelä, T. (2000). Chemical mass closure and assessment of the origin of the submicron aerosol in the marine boundary layer and the free troposphere at Tenerife during ACE-2. Tellus, 52B, 141–168.

    CAS  Google Scholar 

  • Reuter, J.H.,&Perdue, E.M. (1977). Importance of heavy metal-organic matter interactions in natural waters. Geochimica et Cosmochimica Acta, 41, 325–334.

    Article  CAS  Google Scholar 

  • Rogge, W.F., Mazurek, M.A., Hyldemann, L.M., Cass, G.R.,&Simoneit, B.R. (1993). Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmospheric Environment, 27A, 1309–1330.

    CAS  Google Scholar 

  • Schnitzer, M.,&Khan, S.U. (1972). Humic substances in the environment (p. 327). New York: Marcel Dekker.

    Google Scholar 

  • Simoneit, B.R.T., Schauer, J.J., Nolte, C.G., Oros, D.R., Elias, V.O., Fraser, M.P., Rogge, W.F.,&Cass, G.R. (1999). Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmospheric Environment, 33, 173–182.

    Article  CAS  Google Scholar 

  • Spokes, L.J., Jickells, T.D.,&Lim B. (1994). Solubilisation of aerosol trace metals by cloud processing: a laboratory study. Geochimica et Cosmochimica Acta, 58, 3281– 3287.

    Article  CAS  Google Scholar 

  • Stumm, W.,&Morgan, J.J. (1981). Aquatic chemistry (pp. 514–516). New York: Iohn Wiley&Sons.

    Google Scholar 

  • Walte, T.D.,&Morel, F.M.M. (1984). Photoreductive dissolution of colloidal iron oxides in natural waters. Environmental Science and Technology, 18, 860–868.

    Article  Google Scholar 

  • Williams, P.T., Radojevic, M.,&Clarke, A.G. (1988). Dissolution of trace metals fromparticles of industrial origin and its influence on the composition of rainwater. Atmospheric Environment, 22, 1433–1442.

    Article  CAS  Google Scholar 

  • Zappoli, S., Andracchio, A., Fuzzi, S., Facchini, M.C., Gelencsér, A., Kiss, G., Krivácsy, Z., Molnár, Á., Mészaros, E., Hansson, H.-C., Rosman, K.,&Zebühr, Y. (1999). Inorganic, organic and macromolecular components of fine aerosol in different areas of Europe in relation to their water solubility. Atmospheric Environment, 33, 2733–2743.

    Article  CAS  Google Scholar 

  • Zhou, P., Yan, H.,&Gu, B. (2005). Competitive complexation of metal ions with humic substances. Chemosphere, 58, 1327–1337.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mancinelli, V., Decesari, S., Emblico, L. et al. Extractable iron and organic matter in the suspended insoluble material of fog droplets. Water Air Soil Pollut 174, 303–320 (2006). https://doi.org/10.1007/s11270-006-9118-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-006-9118-x

Keywords

Navigation