Skip to main content

Advertisement

Log in

Biosorption of Bromophenol Blue from Aqueous Solutions by Rhizopus Stolonifer Biomass

  • Original Article
  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The removal of bromophenol blue dye (BPB), from aqueous solutions, by biosorption on a non-living biomass of Rhizopus stolonifer was investigated in a batch system. Pretreatment of the biomass with NaOH was found to be the most effective means to enhance the biosorption of BPB. The fungal biomass exhibited the highest dye sorption capacity at pH 2 and the uptake process followed the pseudo-second order reaction model. The equilibrium sorption capacity of the biomass increased as the initial dye concentration increased, and the maximum uptake value was estimated at 1111 mg/g according to Langmuir adsorption isotherm. The adsorbed dye was easily desorbed from a fungal biomass with 0.1 M NaOH solution and the regenerated biomass could be reused for other biosorption essays with similar performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: a review. Process Biochemistry, 40, 997–1026.

    Article  CAS  Google Scholar 

  • Al-Degs, Y., Khraisheh, M. A. M., Allen, S. J., & Ahmad, M. N. (2000). Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent. Water Research, 34, 927–935.

    Article  CAS  Google Scholar 

  • Banks, C. J., & Parkinson, M. E. (1992). The mechanism and application of fungal biosorption to colour removal from raw water. Journal of Chememical Technology and Biotechnology, 54, 192–196.

    CAS  Google Scholar 

  • Banat, I. M., Nigam, P., & Marchant, R. (1996). Microbial decolorization of textile-dye contaning effluents: a review. Bioresource Technology,58, 217–227.

    Article  CAS  Google Scholar 

  • Choy, K. K. H., McKay, G., & Porter, J. F. (1999). Sorption of acid dyes from effluents using activated carbon. Resource Conser. Recycling, 27, 57–71.

    Article  Google Scholar 

  • El-Geundi, M. S. (1991). Color removal from textile effluents by adsorption techniques. Water Research, 25, 271–273.

    Article  CAS  Google Scholar 

  • Freundlich, H. (1907). Uber die adsorption in losungen. Journal of Physical chemisty, 57, 385–470.

    CAS  Google Scholar 

  • Fu, Y., & Viraraghavan, T. (2001). Fungal decolorization of wastewaters: a review. Bioresource Technology, 79, 251–262.

    Article  CAS  Google Scholar 

  • Fu, Y., & Viraraghavan, T. (2002). Removal of congo red from an aqueous solution by fungus. Aspergillus niger. Advance Environment Research 7, 239–247.

    Article  CAS  Google Scholar 

  • Gadd, G. (1990). Biosorption. Chemistry and Industry, 2, 421–426.

    Google Scholar 

  • Gallagher, K. A., Healy, M. G., & Allen, S. J. (1997). Biosorption of synthetic dye and metal ions from aqueous effluents using fungal biomass, In: Wise, D. L. (Eds.), Global environmental biotechnology. Amsterdam: Elsevier.

    Google Scholar 

  • Hoog, G. S., & Guarro, J. (1995). Atlas of clinical fungi. Centraalbureau voor Schimmelcultures. Reus, Spain: Univeesitat Rovira I Virgili.

    Google Scholar 

  • Hu, T. L. (1996). Removal of reactive dyes from aqueous solution by different bacterial genera. Water Science and Technology, 34, 89–95.

    Article  CAS  Google Scholar 

  • Juang, R. S., Tseng, R. L., Wu, F. C., & Lee, S. H. (1997). Adsorption behavior of reactive dyes from aqueous solutions on chitosan. Journal of Chemical Technology and Biotechnology, 70, 391–399.

    Article  CAS  Google Scholar 

  • Kapoor, A., & Viraraghavan, T. (1995). Fungal Bisorption—An alternative treatment option for heavy metal bearing wastewaters: A review. Bioresource Technology, 53, 195–206.

    Article  CAS  Google Scholar 

  • Kirby, N., McMullan, G., & Marchant, R. (1995). Decolorisation of an artificial textile effluent by Phanerochaete chrysosporium. Biotechnology Letters, 17, 761–764.

    Article  CAS  Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinium. Journal of American Chemical Society, 40, 1361–1368.

    Article  CAS  Google Scholar 

  • Largergren, S. (1898). Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar, 24, 1–39.

    Google Scholar 

  • Lin, S. H., & Liu, W. Y. (1994a). Continuous treatment of textile wastewater by ozonation and coagulation. Journal of Environment Engeering ASCE, 120, 437–446.

    Article  CAS  Google Scholar 

  • Lin, S. H., & Peng, F. C. (1994b). Treatment of textile wastewater by electrochemical methods. Water Research, 2, 277–282.

    Article  CAS  Google Scholar 

  • Lin, S. H., & Peng, F. C. (1996). Continuous treatment of textile wastewater by combined coagulation, electrochemical oxidation and activated sludge. Water Research, 30, 189– 196.

    Google Scholar 

  • McKay, G., & Ho, Y. S. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451– 465.

    Article  Google Scholar 

  • Morais, L. C., Freitas, O. M., Goncalves, E. P., Vasconcelos, L. T., & Gonzalez Beca, C. G. (1999). Reactive dyes removal from wastewaters by adsorption on eucalyptus bark: variables that define the process. Water Research, 33, 979–988.

    Article  CAS  Google Scholar 

  • Nigam, P., Banat, I. M., Singh, D., & Marchant, R. (1996). Microbial process for the decoloration of textile effluent containing azo, diazo and reactive dyes. Process Biochemistry, 31, 435–442.

    Article  CAS  Google Scholar 

  • O'Mahony, T., Guibal, E., & Tobin, J. M. (2002). Reactive dye biosorption by Rhizopus arrhizus biomass. Enzyme and Microbial Technology, 31, 456–463.

    Article  Google Scholar 

  • Ramakrishna, K. R., & Viraraghvan, T. (1997). Dye removal using low cost adsorbents. Water Science and Technology, 36, 189–196.

    Article  CAS  Google Scholar 

  • Riddell, R. W. (1950). Permanent stained mycological preparation obtained by slide culture. Mycologia, 42, 265–270.

    Google Scholar 

  • Robinson, T., Mcmullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77, 247–255.

    Article  CAS  Google Scholar 

  • Salen, I. A. (2000). Kinetics of the oxidative color removal and degradation of bromophenol blue with hydrogen peroxide catalyzed by copper (II) supported alumina and zirconia. Applied Catalysis B, 28, 153–162.

    Article  Google Scholar 

  • Tsai, W. T., Chang, C. Y., Ing, C. H., & Chang, C. H. (2004). Adsorption of acid dyes from aqueous solution on activated bleaching earth. Journal of Colloid Interface Science, 275, 72–78.

    Article  CAS  Google Scholar 

  • Tsezos, M., & Volesky, B. (1981). Biosorption of uranium and thorium. Biotechnology and Bioengeering, 23, 583–604.

    Article  CAS  Google Scholar 

  • Waranusantigul, P., Pokethitiyook, P., Kruatrachue, M., & Upatham, E. S. (2003). Kinetics of basic dye (methylene blue) biosorption by giant duckweed (Spirodela polyrrhiza). Environmental Pollution, 125, 385–392.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeroual, Y., Kim, B.S., Kim, C.S. et al. Biosorption of Bromophenol Blue from Aqueous Solutions by Rhizopus Stolonifer Biomass. Water Air Soil Pollut 177, 135–146 (2006). https://doi.org/10.1007/s11270-006-9112-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-006-9112-3

Keywords

Navigation