Skip to main content
Log in

Characterization of Soil Physico-Chemical and Microbial Parameters after Revegetation Near Shaoguan Pb/Zn Smelter, Guangdong, P.R. China

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The criterion for judging the successful revegetation largely focuses on the aboveground indicators, whereas the information for soil ecosystem during the revegetation is often ignored. To better understand the effects of the revegetation on the development of the soil ecosystem near Shaoguan Pb/Zn Smelter, Guangdong Province of Southern China, we compared the difference of the microbial and physico-chemical parameters between the four revegetated sites and two control sites (bare ground and native forest area). The soil organic C, total N, total P, NH4-N, NO3-N, available P, WHC and porosity significantly increased and bulk density decreased in the four revegetated sites compared with those in bare ground, indicating the processive effects of the revegetation on the reestablishment of the soil nutrient pools. The heavy metal contents were higher in the four revegetated sites than in the bare ground, thus the revegetation resulted in the accumulation of heavy metals released from smelter in surface soil. The soil microbial composition and activities, except that the oligotrophic bacterial number decreased over revegetation time, significantly increased in the revegetated sites compared with those in the bare ground, and predominantly correlated with soil organic C, total N, NH4-N, NO3-N and WHC. The soil oligotrophic bacteria was negatively related to all individual heavy metal contents, thus was the most sensitive indicator in reflecting heavy metal stress, while other microbial parameters, despite not showing negative relationships to the individual heavy metal contents, were sensitive to the potential availability of Pb and Cu (ratio of available to total heavy metal contents), but less sensitive to those of Zn and Cd. Both the principal component analysis (PCA) and the discriminant analysis (DA) resulted from microbial and physico-chemical datasets not only revealed the shifts of the soil physico-chemical and microbial patterns from the unrevegetated to non-polluted conditions, but also implied the possible loss of effects of revegetation on soil remediation in the sites revegetated for four (RIV) and five (RV) years, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aceves, M. B., Grace, C., Ansorena, J., Dendooven, L. and Brookes, P. C.: 1999, ‘Soil microbial biomass and organic C in a gradient of zinc concentrations in soils around a mine spoil tip’, Soil Biol. Biochem. 31, 867–876.

    Article  CAS  Google Scholar 

  • AlmÁs, Á. R., Bakken, L.R. and Mulder, J.: 2004, ‘Changes in tolerance of soil microbial communities in Zn and Cd contaminated soils’, Soil Biol. Biochem. 36, 805–813.

    Article  CAS  Google Scholar 

  • Anand, M., Ma, K. M., Okonsk, A., Levin, S. and Mccreath, D.: 2003, ‘Characterising biocomplexity and soil microbial dynamics along a smelter-damaged landscape gradient’, Sci. Total Environ. 311, 247–259.

    Article  CAS  Google Scholar 

  • Anderson, J. P. E. and Domsch, K. H.: 1978, ‘A physiological method for the quantitative measurement of microbial biomass in soils’, Soil Biol. Biochem. 10, 215–221.

    Article  CAS  Google Scholar 

  • Anderson, T. H. and Domsch, K. H.: 1989, ‘Ratios of microbial biomass carbon to total carbon in arable soil’, Soil Biol.Biochem. 21, 471–479.

    Article  Google Scholar 

  • Anderson, T. H. and Domsch, K. H.: 1990, ‘Application of eco-physiological quotients (q CO2 and qD) on microbial biomasses from soils of different cropping histories’, Soil Biol. Biochem. 25, 393–395.

    Article  Google Scholar 

  • Baker, D. E. and Amacher, M. C.: 1982, ‘Nickel, Copper, Zinc and Cadmium’, in A. L. Page, R. H. Miller and D. R. Keeney (eds), Methods of Soil Analysis: Part 2, Chemical and Microbiological Properties, American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin, pp. 323–336.

    Google Scholar 

  • Bauhus, J. and Khanna, P. K.: 1994, ‘Carbon and nitrogen turnover in two acid forest soils of southeast Australia as affected by phosphorus addition and drying and rewetting’, Biol. Fertil. Soils 17, 212–218.

    Article  CAS  Google Scholar 

  • Bech, J., Poschenrieder, C., Llugany, M., Barceló, J., Tume, P., Tobias, F. J., Barranzuela, J. L. and Vásquez, E. R.: 1997, ‘Arsenic and heavy metal contamination of soil and vegetation around a copper mine in Northern Peru’, Sci. Total Environ. 203, 83–91.

    Article  CAS  Google Scholar 

  • Beveridge, T. J., Hughes, M. N., Lee, H., Leung, K. T., Poole, R. K., Savvaidis, I., Silver, S. and Trevors, J. T.: 1997, ‘Metal-microbe interactions: Contemporary approaches’, Adv. Microb. Physiol. 38, 177–243.

    Article  CAS  Google Scholar 

  • Böhme, L. and Böhme, F.: 2005, ‘Soil microbiological and biochemical properties affected by plant growth and different long-term fertilisation’, Eur. J. Soil Biol. in press.

  • Bray, R. H. and Kurtz, L. T.: 1945, ‘Determination of total, organic and available forms of phosphorus in soil’, Soil Sci. 59, 39–45.

    Article  CAS  Google Scholar 

  • Bremner, J. M. and Mulvaney, C. S.: 1982, ‘Total nitrogen’, in A. L. Page (ed.), Methods of Soil Analysis, Part 2, 2nd Edition, Agronomy Monograph 9, ASA and SSSA, Madison, WI, pp. 595–624.

    Google Scholar 

  • Bunt, J. S. and Rovira, A. D.: 1955, ‘Microbial studies of some subantarctic soils’, J. Soil Sci. 6, 119–128.

    Article  CAS  Google Scholar 

  • Chew, I., Obbard, J. P. and Stanforth, R. R.: 2001, ‘Microbial cellulose decomposition in soils from a rifle range contaminated with heavy metals’, Environ. Pollut. 111, 367–375.

    Article  CAS  Google Scholar 

  • Clemente, R., Walker, D. J., Roig, A. and Bernal, M. P.: 2003, ‘Heavy metal bioavailability in a soil affected by mineral sulphides contamination following the mine spillage at Aznalcóllar (Spain)’, Biodegradation 14, 199–205.

    Article  CAS  Google Scholar 

  • Department of Soil microbiology, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China: 1985, ‘The methods for soil microbial measurements’, Science Press, Beijing, pp. 123–124.

    Google Scholar 

  • Dupuy, N. and Douay, F.: 2001, ‘Infrared and chemometrics study of the interaction between heavy metals and organic matter in soils’, Spectroch. Acta A 57, 1037–1047.

    Article  Google Scholar 

  • Ekblad, A. and Nordgren, A.: 2002, ‘Is growth of soil microorganisms in boreal forests limited by carbon or nitrogen availability?’, Plant Soil 242, 115–122.

    Article  CAS  Google Scholar 

  • Ellis, R. J., Morgan, P., Weightman, A. J. and Fry, J. C.: 2003, ‘Cultivation-dependent and-independent approaches for determining bacterial diversity in heavy-metal-contaminated soil’, Appl. Environ. Microbiol. 69, 3223–3230.

    Article  CAS  Google Scholar 

  • Filip, Z., Kanazawa, S. and Berthelin, J.: 2000, ‘Distribution of microorganisms, biomass ATP, and enzyme activities in organic and mineral particles of a long-term wastewater irrigated soil’, J. Plant Nutr. Soil Sci. 163, 143–150.

    Article  CAS  Google Scholar 

  • Griffiths, B. S., Bonkowski, M., Roy, J. and Ritz, K.: 2001, ‘Functional stability, substrate utilisation and biological indicators of soils following environmental impacts’, Appl. Soil Ecol. 16, 49–61.

    Article  Google Scholar 

  • Hargreaves, P. R., Brookes, P. C., Ross, G. J. S. and Poulton, P. R.: 2003, ‘Evaluating soil microbial biomass carbon as an indicator of long-term environmental change’, Soil Biol. Biochem. 35, 401–407.

    Article  CAS  Google Scholar 

  • Harris, J. A.: 2003, ‘Measurements of the soil microbial community for estimating the success of restoration’, Euro. J. Soil Sci. 54, 801–808.

    Article  Google Scholar 

  • Hattori, R. and Hattori, T.: 1980, ‘Sensitivity to salts and organic compounds of soil bacteria isolation on diluted media’, J.Gen. Appl. Microbiol. 26, 1–14.

    CAS  Google Scholar 

  • Helmisaari, H. S., Derome, J., Fritze, H., Nieminen, T., Palmgren, K., Salemaa, M. and Vanha-Majamaa, I.: 1995, ‘Copper in Scots pine forests around a heavy-metal smelter in south-western Finland’, Water Air Soil Pollut. 85, 1727–1732.

    Article  CAS  Google Scholar 

  • Hofman, J., DuVek, L., Klánová, J., Bezchlebová, J. and Holoubek, I.: 2004, ‘Monitoring microbial biomass and respiration in different soils from the Czech Republic – summary of results’, Environ. Int. 30, 19–30.

    Article  Google Scholar 

  • Insam, H., Hutchinson, T. C. and Reber, H. H.: 1995, ‘Effects of heavy metal stress on the metabolic quotient of the soil microflora’, Soil Biol. Biochem. 28, 691–694.

    Article  Google Scholar 

  • Isermayer, H.: 1952, ‘Eine einfache methode zur bestimmung der bodenalmung und der carbonate im boden’, Z Pflanzenernaehr. Bodenkd. 56, 26–38.

    Google Scholar 

  • Jaggi, W.: 1976, ‘Die Bestimmung der CO2-Bilding als Mass der bodenbiologischen Aktivität’, Schw. Landw. Forsch. 15, 371–380.

    Google Scholar 

  • Jenkinson, D. S.: 1988, ‘Determination of microbial carbon and nitrogen in soil’, in J. B. Whilson (ed.), Advances in Nitrogen Cycling, CAB International, Wallingford, UK, pp. 368–386.

    Google Scholar 

  • Jia, G. M., Cao, J., Wang, C. Y. and Wang, G.: 2005, ‘Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwulin, northwest China’, Forest Ecol. Manag. 217, 117–125.

    Article  Google Scholar 

  • Joergensen, K. G. and Brookes, P. C.: 1990, ‘Ninhydrin-reactive nitrogen measurements of microbial biomass in 0.5 M K2SO4 soil extracts’, Soil Biol. Biochem. 22, 1023–1027.

    Article  CAS  Google Scholar 

  • Keeney, D. R. and Nelson, D. W.: 1982, ‘Nitrogen: Inorganic forms’, in A.L. Page (ed.), Methods of Soil Analysis, Part 2, 2nd Edition. Agronomy Monograph 9, ASA and SSSA, Madison, WI, pp. 643–698.

    Google Scholar 

  • Kell, D. B., Kaprelyants, A. S., Weichart, D. H., Harwood, C. R. and Barer, M. R.: 1998, ‘Viability and activity in reality culturable bacteria: A review and discussion of the practical issues’, Anton. Leeuw. 73, 169–187.

    Article  CAS  Google Scholar 

  • Kelly, J. J., Häggblom, M. M. and Tate, R. L.: 2003, ‘Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipid fatty acid profiles’, Biol. Fert. Soils 38, 65–71.

    Article  CAS  Google Scholar 

  • Knight, B. P., McGrath, S. P. and Chaudri, A. M.: 1997, ‘Biomass carbon measurements and substrate utilization patterns of microbial populations from soil amended with cadmium, copper, or zinc’, Appl. Environ. Microbiol. 63, 39–43.

    CAS  Google Scholar 

  • Lombi, E., Zhao, F. J., Wieshammer, G., Zhang, G. Y., Steve, P. and McGrath, S. P.: 2002, ‘In situ fixation of metals in soils using bauxite residue: Biological effects’, Environ. Pollut. 118, 445–452.

    Article  CAS  Google Scholar 

  • Madejón, E., Burgos, P., López, R. and Cabrera, F.: 2001, ‘Soil enzymatic response to addition of heavy metals with organic residues’, Biol. Fert. Soils 34, 144–150.

    Article  CAS  Google Scholar 

  • Margesin, R., Zimmerbauer, A. and Schinner, F.: 2000, ‘Monitoring of bioremediation by soil biological activities’, Chemosphere 40, 339–346.

    Article  CAS  Google Scholar 

  • Martin, J. P.: 1950, ‘Use of acid, rose Bengal and streptomycin in the plate method for estimating soil fungi’, Soil Sci. 69, 215–232.

    Article  CAS  Google Scholar 

  • McGrath, S. P. and Cunliffe, C. H.: 1985, ‘A simplified method for the extraction of the metals Fe, Zn, Cu, Ni, Cd, Pb, Cr, Co and Mn from soils and sewage sludges’, J. Sci. Food Agr. 36, 794–798.

    Article  CAS  Google Scholar 

  • Mendelssohn, I. A., Sorrell, B. K., Brix, H., Schierup, H. H., Lorenzen, B. and Maltby, E.: 1999, ‘Controls on soil cellulose decomposition along a salinity gradient in a Phragmites australis wetland in Denmark’, Aquat. Bot. 64, 381–398.

    Article  CAS  Google Scholar 

  • Misra, R.: 1968, ‘Ecology work book’, Oxford and IBH Publishing, New Delhi.

    Google Scholar 

  • Montalvo, A. M., Williams, S. L., Rice, K. J., Buchmann, S. L., Cory, C., Handel, S. N., Nabhan, G. P., Primack, R. and Robichaux, R. H.:1997, ‘Restoration biology: A population perspective’, Restor. Ecol. 5, 277–290.

    Article  Google Scholar 

  • Mummey, D. L., Stahl, P. D. and Buyer, J. S.: 2002, ‘Soil microbiological properties 20 years after surface mine reclamation: Spatial analysis of reclaimed and undisturbed sites’, Soil Biol. Biochem. 34, 1717–1725.

    Article  CAS  Google Scholar 

  • Nelson, D. W. and Sommers, L. E.: 1982, ‘Total carbon, organic carbon and organic matter’, in: A. L. Page (ed), Methods of Soil Analysis, Part 2, 2nd Edition, Agronomy Monographs 9, ASA and SSSA, Madison, WI, pp. 539–579.

    Google Scholar 

  • Odum, E. P.: 1985, ‘Trends expected in stressed ecosystems’, Bioscience 35, 419–422.

    Article  Google Scholar 

  • Ohta, H. and Hattori, T.: 1983, ‘Oligotrophic bacteria on organic debris and plant roots in a paddy field soil’, Soil Biol. Biochem. 15, 1–8.

    Article  Google Scholar 

  • Oste, L. A., Dolfing, J., Ma, W. and Lexmond, T. M.: 2001, ‘Cadmium uptake by earthworms as related to the availablility in the soil and the intestine’, Environ. Toxicol. Chem. 20, 1785–1791.

    Article  CAS  Google Scholar 

  • Pankhurst, C. E., Hawke, B. G., McDonald, H. J., Buckerfield, J. C., Michellsen, P., O'Brien, K. A., Gupta, V. V. S. R. and Doube, B. M.: 1995, ‘Evaluation of soil biological properties as potential bioindicators of soil health’, Aust. J. Exp. Agric. 35, 1015–1028.

    Article  Google Scholar 

  • Pascual, J. A., Garcia, C., Hernandez, T., Moreno, J. L. and Ros, M.: 2000, ‘Soil microbial activity as a biomarker of degradation and remediation processes’, Soil Biol. Biochem. 32, 1877–1883.

    Article  CAS  Google Scholar 

  • Preston, S., Wirth, S., Ritz, K., Griffiths, B. S. and Young I. M.: 2001, ‘The role played by microorganisms in the biogenesis of soil cracks: importance of substrate quantity and quality’, Soil Biol. Biochem. 33, 1851–1858.

    Article  CAS  Google Scholar 

  • Powlson, D. S.: 1994, ‘The soilmicrobial biomass: Before, beyond and back’, in K. Ritz, J. Dighton and K. E. Giller (eds.), Beyond the Biomass, Wiley-Sayce, Chichester, pp. 3–20.

    Google Scholar 

  • Rampazzo, N. and Mentler, A.: 2001, ‘Influence of different agricultural landuse on soil properties along the Austrian-Hungarian border’, Die Bodenkultur 52, 89–115.

    CAS  Google Scholar 

  • Remon, E., Bouchardon, J. L., Cornier, B., Guy, B., Leclerc, J. C. and Faure, O.: 2005, ‘Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: Implications in risk assessment and site restoration’, Environ. Pollut. 137, 316–323.

    Article  CAS  Google Scholar 

  • Ross, D. J. and Tate, K. R.: 1993, ‘Microbial C and N, and respiratory activity, in litter and soil of a Southern beech (Nothofagus) forest: Distribution and properties’, Soil Biol. Biochem. 25, 477–483.

    Article  Google Scholar 

  • Rosen, B. P.: 1996, ‘Bacterial resistance to heavy metals and metalloids’, J. Biol. Inorg.Chem. 1, 273–277.

    Article  CAS  Google Scholar 

  • Roy, A. and Singh, K. P.: 2003, ‘Dynamics of microbial biomass and nitrogen supply during primary succession on blastfurnace slag dumps in dry tropics’, Soil Biol. Biochem. 35, 365–372.

    Article  CAS  Google Scholar 

  • Shi, W., Bischoff, M., Turco, R. and Konopka, A.: 2002, ‘Long-term effects of chromium and lead upon the activity of soil microbial communities’, Appl. Soil Ecol. 21, 169–177.

    Article  Google Scholar 

  • Simona, C., Floraangela, R. and Amalia, V. S.: 2004, ‘Suitability of soil microbial parameters as indicators of heavy metal pollution’, Water Air Soil Pollut. 158, 21–35.

    Article  Google Scholar 

  • Singh, S. P., Tack, M. and Verloo, M. G.: 1998, ‘Heavy metal fractionation and extractability in dredged sediment derived surface soils’, Water Air Soil Pollut. 102, 313–328.

    Article  CAS  Google Scholar 

  • Smith, J. L. and Doran, J. W.: 1996, ‘Measurement and use of pH and electrical conductivity for soil quality analysis’, in J. W. Doran and A. J. Jones (eds.), Methods for Assessing Soil Quality, SSSA Special Publication 35, Madison, WI, pp. 169–185.

  • Smith, F. C., Johnson, A. H., Dranoff, M. and Wibiralske, A.: 1997, ‘Biomass and nutrient accumulation during natural aforestation of iron-smelting slag’, Restor. Ecol. 1, 56–65.

    Article  Google Scholar 

  • Söderberg, K. H., Probanza, A., Jumpponen, A. and BÁÁth, E.: 2004, ‘The microbial community in the rhizosphere determined by community-level physiological profiles (CLPP) and direct soil-and cfu-PLFA techniques’, Appl. Soil Ecol. 25, 135–145.

    Article  Google Scholar 

  • Sparling, G. P. and West, A. W.: 1988, ‘A direct extraction method to estimate soil microbial C: Calibration in situ using microbial respiration and 14C labeled cells’, Soil Biol Biochem. 20, 337–343.

    Article  CAS  Google Scholar 

  • Sparling, G. P.: 1997, ‘Soil microbial biomass, activity and nutrient cycling as indicators of soil health’, in C. E. Pankhurst, B. M. Doube and V. V. S. R. Gupta (eds.), Biological Indicators of Soil Health. CAB International, Wallingford, pp. 97–119.

    Google Scholar 

  • Tada, Y. and Inour, T.: 2000, ‘Use of oligotrophic bacteria for the biological monitoring of heavy metals’, J. Appl. Microbiol. 88, 154–160.

    Article  CAS  Google Scholar 

  • Tada, Y., Kobata, T. and Nakaoka, C.: 2001, ‘A simple and easy method for the monitoring of environmental pollutants using oligotrophic bacteria’, Lett. Appl. Microbiol. 32, 12–15.

    Article  CAS  Google Scholar 

  • Tordo, G. M., Baker, A. J. M. and Willis, A. J.: 2000, ‘Current approaches to the revegetation and reclamation of metalliferous mine wastes’, Chemosphere 41, 219–228.

    Article  Google Scholar 

  • Vangronsveld, J., Colpaert, J. V. and Van Tichelen, K. K.: 1996, ‘Reclamation of a bare industrial area contaminated by non-ferrous metals: Physico-chemical and biological evaluation of the durability of soil treatment and revegetation’, Environ. Pollut. 2, 131–140.

    Article  Google Scholar 

  • Vig, K., Megharaj, M., Sethunathan, N. and Naidu, R.: 2003, ‘Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: A review’, Adv. Environ. Res. 8, 121–135.

    Article  CAS  Google Scholar 

  • Visser, S., Griffiths, C. L. and Parkinson, D.: 1983, ‘Effects of surface mining on the microbiology of a prairie site in Alberta’, Can. J. Soil Sci. 63, 177–189.

    Article  Google Scholar 

  • Walker, D. J., Clemente, R., Roig, A. and Bernal, M. P.: 2003, ‘The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils’, Environ. Pollut. 122, 303–312.

    Article  CAS  Google Scholar 

  • Wardle, D. A.: 1992, ‘A comparative assessment of factors which influnce microbial biomass carbon and nitrogen levels in soil’, Biol. Rev. 67, 321–356.

    Google Scholar 

  • Wardle, D. A., Walker, L. R. and Bardgett, R. D.: 2004, ‘Ecosystem properties and forest decline in contrasting long-term chronosequences’, Science 305, 509–513.

    Article  CAS  Google Scholar 

  • Wong, M. H.: 2003, ‘Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils’, Chemosphere 50, 775–780.

    Article  CAS  Google Scholar 

  • Zevenhuizen, L. P. T., Dolfing, J., Eshuis, E. J. and Scholter, I. J.: 1979, ‘Inhibitory effects of copper on bacteria related to the free ion concentration’, Microb. Ecol. 5, 139–146.

    Article  CAS  Google Scholar 

  • Zimmermann, S. and Frey, B.: 2002, ‘Soil respiration and microbial properties in an acid forest soil: Effects of wood ash’, Soil Biol. Biochem. 34, 1727–1731.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong-Bang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, CB., Huang, LN., Wong, MH. et al. Characterization of Soil Physico-Chemical and Microbial Parameters after Revegetation Near Shaoguan Pb/Zn Smelter, Guangdong, P.R. China. Water Air Soil Pollut 177, 81–101 (2006). https://doi.org/10.1007/s11270-006-9096-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-006-9096-z

Keywords

Navigation