Skip to main content
Log in

Statistical Modeling of the Partitioning of Nonylphenol in Soil

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Partition coefficients K P of nonylphenol (NP) in soil were determined for 193 soil samples which differed widely in content of soil organic carbon (SOC), hydrogen activity, clay content, and in the content of dissolved organic carbon (DOC). By means of multiple linear regression analysis (MLR), pedotransfer functions were derived to predict partition coefficients from soil data. SOC and pH affected the sorption, though the latter was in a range significantly below the pKa of NP. Quality of soil organic matter presumably plays an important but yet not quantified role in sorption of NP. For soil samples with SOC values less than 3 g kg−1, model prediction became uncertain with this linear approach. We suggest that using only SOC and pH data results in good prediction of NP sorption in soils with SOC higher than 3 g kg−1. Considering the varying validity of the linear model for different ranges of the most sensitive parameter SOC, a more flexible, nonlinear approach was tested. The application of an artificial neuronal network (ANN) to predict sorption of NP in soils showed a sigmoidal relation between K P and SOC. The nonlinear ANN approach provided good results compared to the MLR approach and represents an alternative tool for prediction of NP partitioning coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chiou, C. T.: 1989, ‘Theorectical considerations of the partition uptake of non-ionic organic compounds by soil organic matter’, In: B.L. Sawhney and K. Brown (eds.), Reactions and movement of organic chemicals in soils. Soil Sci. Soc. Am. Special Publ. 22, 1–30.

  • Chiou, C. T., Malcolm, R. L., Brinton, T. I. and Kile, D. E.: 1986, ‘Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids’, Environ. Sci. Technol. 20, 502–508.

    Article  CAS  Google Scholar 

  • Cox, L., Celis, R., Hermosin, C. and Cornejo, J.: 2000, ‘Natural soil colloids to retard simazine and 2,4-D leaching in soil’, J. Agric. Food Chem. 48, 93–99.

    Article  CAS  Google Scholar 

  • Dachs, J., Van Ry, D. A. and Eisenreich, S. J.: 1999, ‘Occurrence of estrogenic nonylphenols in the urban and coastal atmosphere of the lower Hudson river estuary’, Environ. Sci. Technol. 33, 2676–2679.

    Article  CAS  Google Scholar 

  • Dubus, I. G., Barriuso, E. and Calvet, R.: 2001, ‘Sorption of weak organic acids in soils: Clofencet, 2,4-D and salicylic acid’, Chemosphere 45, 767–774.

    Article  CAS  Google Scholar 

  • Düring, R.-A., Krahe, S. and Gäth, S.: 2002, ‘Sorption behavior of nonylphenol in terrestrial soils’, Environ. Sci. Technol. 36, 4052–4057.

    Article  CAS  Google Scholar 

  • Good, P. I.: 2001, ‘Resampling methods: A practical guide to data analysis’, Birkhäuser, Boston, 2nd (ed.,) ISBN 0-8176-4243-9. 238 pp.

  • Gramatica, P., Corradi, M. Consoni, V.: 2000, ‘Modelling and prediction of soil sorption coefficients of non-ionic organic pesticides by molecular descriptors’, Chemosphere 41, 763–777.

    Article  CAS  Google Scholar 

  • Guenther, K., Heinke, N., Thiele, B., Kleist, E., Prast, P. and Raecker, T.: 2002, ‘Endocrine disrupting nonylphenols are ubiquitous in food’, Environ. Sci. Technol. 36, 1676–1680.

    Article  CAS  Google Scholar 

  • Haykin, S.: 1994, Neural networks: A comprehensive foundation. Macmillan College Publishing Company, New York, 696 pp.

    Google Scholar 

  • Hecht-Nielsen, R.: 1991, Neurocomputing. Addison-Wesley, New York, 433pp.

    Google Scholar 

  • Ieda, T., Horii, Y., Petrick, G., Yamashita, N., Ochiai, N. and Kannan, K.: 2005, ‘Analysis of nonylphenol isomers in a technical mixture and in water by comprehensive two-dimensional gas chromatography-mass spectrometry’, Environ. Sci. Technol. 39, 7202–7207.

    Article  CAS  Google Scholar 

  • Karickhoff, S. W., Brown, D. S. and Scott, T. A.: 1979, ‘Sorption of hydrophobic pollutants on natural sediments’, Water Res. 13, 241–248.

    Article  CAS  Google Scholar 

  • Karickhoff, S.: 1984, ‘Organic pollutant sorption in aquatic systems,’ J. Hydraul. Eng.-ASCE 110, 707–734.

    Article  Google Scholar 

  • LaGuardia, M. J., Hale, R. C., Harvey, E. and Minor, T. M.: 2001, ‘Alkylphenol ethoxylate degradation products in land-applied sewage sludge (biosolids)’, Environ. Sci. Technol. 35, 4798–4804.

    Article  CAS  Google Scholar 

  • Lalah, J. O., Schramm, K.-W., Henkelmann, B., Lenoir, D., Behechti, A., Günther, K. and Kettrup, A.: 2003, ‘The dissipation, distribution and fate of a branched 14C-nonylphenol isomer in lake water/sediment systems’, Environ. Pollut. 122, 195–203.

    Article  CAS  Google Scholar 

  • Maxin, C. R. and Kögel-Knabner, I.: 1995, ‘Partitioning of polycyclic aromatic hydrocarbons (PAH) to water-soluble soil organic matter’, Eur. J. Soil Sci. 46, 193–204.

    Article  CAS  Google Scholar 

  • McBratney, A. B., Minasny, B., Cattle, S. R. Vervoort, R. W.: 2002, ‘From pedotransfer functions to soil inference systems’, Geoderma 109, 41–73.

    Article  Google Scholar 

  • McCarthy, J. F. and Zachara, J. M.: 1989, ‘Subsurface transport of contaminants’, Environ. Sci. Technol. 23, 496–504.

    Google Scholar 

  • McLeese, D. W., Zitko, V., Sergeant, D. B., Burridge, L. and Metcalfe, C. D.: 1981, ‘Lethality and accumulation of alkylphenols in aquatic fauna’, Chemosphere 10, 723–730.

    Article  CAS  Google Scholar 

  • Müller, S., Wilcke, W., Kanchanakool, N. and Zech, W.: 2001, ‘Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in density fractions of urban soils in Bangkok, Thailand’, Soil. Sci. 166, 672–680.

    Article  Google Scholar 

  • Nash, J. E. and Sutcliffe, J. V.: 1970, ‘River flow forecasting through conceptual models. Part I: A discussion of principles’, J. Hydrol 10, 282–290.

    Article  Google Scholar 

  • Ockenden, W. A., Breivik, K., Meijer, S. N., Steinnes, E., Sweetman, A. J. and Jones, K. C.: 2003, ‘The global re-cycling of persistent organic pollutants is strongly retarded by soils’, Environ. Pollut. 121, 75–80.

    Article  CAS  Google Scholar 

  • Pignatello, J. J.: 1998, ‘Soil organic matter as a nanoporous sorbent of organic pollutants’, Adv. Colloid Interfac. 77, 445–467.

    Article  Google Scholar 

  • Pryor, S. W., Hay, A. G. and Walker, L. P.: 2002, ‘Nonylphenol in anaerobically digested sewage sludge from New York State’, Environ. Sci. Technol. 36 3678–3682.

    Article  CAS  Google Scholar 

  • Raber, B. and Kögel-Knabner, I.: 1997, ‘Influence of origin and properties of dissolved organic matter on the partition of polycyclic aromatic hydrocarbons (PAH)’, Chemosphere 48, 443– 455.

    CAS  Google Scholar 

  • Romano, R.: 1991, ‘Current studies on Nonylphenol — physical/chemical, biodegradation and aquatic effects, In Proceedings of the Seminar on Nonylphenol Ethoxylates (NPE) and Nonylphenol (NP), Saltsjöbaden, Sweden, Feb. 6–8 1991, Ingvar Bingman, publ., Stockholm, ISBN 91–620–3907–5, pp. 233–236

    Google Scholar 

  • Schaap, M. G. Bouten, W.: 1996, ‘Modeling water retention curves of sandy soils using neural networks’, Water Res. 32, 3033–3040.

    Article  CAS  Google Scholar 

  • Schaap, M. G., Leij, F. J. and van Genuchten, M. T.: 2001, ‘ROSETTA: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions’, J. Hydrol. 251, 163–176.

    Article  Google Scholar 

  • Schellenberg, K., Leuenberger, C. and Schwarzenbach, R. P.: 1985, ‘Sorption of chlorinated phenols by natural sediments and aquifer materials’, Environ. Sci. Technol. 18, 652–657.

    Article  Google Scholar 

  • Singh, N.: 2002, ‘Sorption behavior of triazole fungicides in Indian soils and its correlation with soil properties’, J. Agric. Food Chem. 50, 6434–6439.

    Article  CAS  Google Scholar 

  • Sonnenschein, C. and Soto, A. M.: 1998, ‘An updated review of environmental estrogen and androgen mimics and antagonists’, J. Steroid Biochem. 65, 143–150.

    Article  CAS  Google Scholar 

  • Thiele, B., Heinke, V., Kleist, E. and Guenther, K.: 2004, ‘Contribution to the structural elucidation of 10 isomers of technical p-nonylphenol’, Environ. Sci. Technol. 38, 3405–3411.

    Article  CAS  Google Scholar 

  • Thiele, S. and Leinweber, P.: 2001, ‘Parameterization of Freundlich adsorption isotherms for heavy metals in soils from an area with intensive livestock production’, J. Plant Nutr. Soil Sci. 164, 623–629.

    Article  CAS  Google Scholar 

  • Van Ry, D. A., Dachs, J., Nelson, E. D. and Eisenreich, S. J.: 2000, ‘Atmospheric seasonal trends and environmental fate of alkylphenols in the lower Hudson River Estuary’, Environ. Sci. Technol. 34, 2410–2417.

    Article  CAS  Google Scholar 

  • Wang, Q., Yang, W. and Liu, W.: 1999, ‘Adsorption of acetanilide herbicides on soil and its correlation with soil properties’, Pestic. Sci. 55, 1103–1108.

    Article  CAS  Google Scholar 

  • Yamamoto, H., Liljestrand, H. M., Shimizu, Y. and Morita, M.: 2003, ‘Effects of physical—chemical characteristics on the sorption of selected endocrine disruptors by dissolved organic matter’, Environ. Sci. Technol. 37, 2646–2657.

    Article  CAS  Google Scholar 

  • Ying, G. G. and Kookana, R. S.: 2003, ‘Degradation of five selected endocrine-disrupting chemicals in seawater and marine sediment’, Environ. Sci. Technol. 37, 1256–1260.

    Article  CAS  Google Scholar 

  • Zsolnay, A.: 2003, ‘Dissolved organic matter: Artefacts, definitions, and functions’, Geoderma 113, 187–209.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf-Alexander Düring.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krahe, S., Düring, RA., Huisman, J.A. et al. Statistical Modeling of the Partitioning of Nonylphenol in Soil. Water Air Soil Pollut 172, 221–237 (2006). https://doi.org/10.1007/s11270-005-9077-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-005-9077-7

Keywords

Navigation