Skip to main content
Log in

Fungal Bioremediation of Creosote-Contaminated Soil: A Laboratory Scale Bioremediation Study Using Indigenous Soil Fungi

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The aim of the study is to determine the efficacy of indigenous soil fungi in removing (PAHs) from creosote-contaminated soil with a view to developing a bioremediation strategy for creosote-contaminated soil. Five fungal isolates, Cladosporium, Fusarium, Penicillium, Aspergillus and Pleurotus, were separatelyinoculated onto sterile barley grains and incubated in the dark. Thecolonized barley was inoculated onto creosote-contaminated (250 000 mg kg−1) soil in 18 duplicate treatments and incubated at 25 °C forseventy days. The soil was amended with nutrient supplements to give a C:N:Pratio of 25:5:1 and tilled weekly. Creosote removal was higher (between 78and 94%) in nutrient supplemented treatments than in the un-supplementedones (between 65 and 88%). A mixed population of fungi was more effective(94.1% in the nutrient amended treatment) in creosote removal than singlepopulations wit a maximum of 88%. Barley supported better fungal growthand PAH removal. Pleurotus sp. removed the creosote more than the other isolates. Two andthree-ring PAHs were more susceptible to removal than the 4- and 5-ringPAHs, which continued to remain in small amounts to the end of thetreatment. Reduction of creosote in the present study was higher than wasobserved in an earlier experiment using a consortium of microorganisms, mainly bacteria, on the same contaminated soil (Atagana, 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M.: 1999, Biodegradation and Bioremediation, Academic Press, San Diego, pp. 10–75.

    Google Scholar 

  • Alexopoulos, C. J., Mims, C. W. and Blackwell, M.: 1996, Introduction to Mycology, John Wiley & Sons, New York, pp. 45–145.

    Google Scholar 

  • Andersson, B. E. and Henrysson, T.: 1996, ‘Accumulation and degradation of dead-end metabolites during treatment of soil contaminated with polycyclic aromatic hydrocarbons with five strains of white rot fungi’, Appl. Microbiol. Biotechnol. 46, 647–652.

    Article  CAS  Google Scholar 

  • Atagana, H. I.: 2003, ‘Bioremediation of creosote-contaminated soil: A pilot-scale landfarming evaluation’, World J. Microbiol. Biotechnol. 19, 571–581.

    Article  CAS  Google Scholar 

  • Atlas R. M.: 1981, ‘Microbial degradation of petroleum hydrocarbons: an environmental perspective’, Microbiol. Rev. 45, 180–209.

    CAS  Google Scholar 

  • Baker, K. H. and Herson, D. S.: 1995, Bioremediation. McGraw-Hill, Toronto, pp. 56–152.

    Google Scholar 

  • Barnett, H. L. and Hunter, B. B.: 1998, Illustrated genera of imperfect fungi. APS Press, St. Paul, pp. 15–77.

    Google Scholar 

  • Bazelel, L., Hadar, Y. and Cerniglia C. E.: 1996, ‘Mineralization of polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus’, Appl. Environ. Microbiol. 62, 292–295.

    Google Scholar 

  • Bogan, B. W. and Lamar, R. T.: 1995, ‘One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium’, Appl. Environ. Microbiol. 61, 2631–2635.

    CAS  Google Scholar 

  • Boonchan, S., Britz, M. L. and Stanley, G. A.: 2000, ‘Degradation and mineralization of high-molecular weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures’, Appl. Environ. Microbiol. 60, 1007–1019.

    Article  Google Scholar 

  • Boyle, C. D.: 1995, ‘Development of a practical method for inducing white rot fungi to grow into and degrade organopollutants in soil’, Can. J. Microbiol. 41, 345–353.

    CAS  Google Scholar 

  • Casillas, R. P., Crow Jr, S. A., Heinze, T. M., Deck, J. and Cerniglia, C. E.: 1996, ‘Initial oxidative and subsequent conjugative metabolites produced during the metabolism of phenanthrene by fungi’, J Ind. Microbiol. 16, 205–215.

    Article  CAS  Google Scholar 

  • Cerniglia, C. E. and Gibson, D. T.: 1977, ‘Metabolism of Naphthalene by Cunninghamella Elegans’, Appl. Environ. Microbiol. 34, 363–370.

    CAS  Google Scholar 

  • Cerniglia, C. E.: 1997, ‘Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation’, J Ind. Microbiol. Biotechnol. 19, 324–333.

    Article  CAS  Google Scholar 

  • Clemente, A. R., Falconi, F. A., Anasawa, T. A. and Durrant, L. R.: 1999, ‘Degradation of aromatic pollutants by a non-basidiomycete ligninolytic fungus’, in A. Leeson and B.C. Alleman (eds.), Bioremediation Technologies for Polycyclic Aromatic Hydrocarbon Compounds, Battelle Press, Columbus.

    Google Scholar 

  • Coutts, D. A. P., Senior, E. and Balba, M. T. M.: 1987, Multistage hemostat investigation of interspecies interactions in a hexanoate-catabolizing microbial association isolated from anoxic landfill. J. Appl. Bact. 62, 251–260.

    CAS  Google Scholar 

  • Davis, J. S. and Westlake, D. W. S.: 1978, ‘Crude oil utilization by fungi’, Can. J. Microbiol. 25, 146–156.

    Article  Google Scholar 

  • Eggen, T., Araneda, E., Vethe, Ø. and Sveum, P.: 1999, ‘Degradation of aged creosote-contaminated soil by Pleurotus ostreatus’, in A. Leeson and B.C. Alleman (eds.) Bioremediation Technologies for Polycyclic Aromatic Hydrocarbon Compounds, Battelle Press, Columbus.

    Google Scholar 

  • Eriksson, M., Dalhammar, G. and Borg-Karlson, A. -K.: 2000, ‘Biological degradation of selected hydrocarbons in an old PAH/creosote contaminated soil from a gas work site’, Appl. Microbiol. Biotechnol. 53, 619–626.

    Article  CAS  Google Scholar 

  • Ferris, J. P., Fasco, M. J., Stylianopoulou, F. L., Jerina, D. M., Daly, J. W. and Jeffrey, A. M.: 1973, Monooxygenase activity in Cunninghamella bainieri: evidence for a fungal system similar to liver microsomes. Arch. Biochem. Bioph. 156, 97–103.

    Article  CAS  Google Scholar 

  • Field J. A., De Jong, E, Costa, G. F. and de Bont, J. A. J.: 1992.: ‘Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi’, Appl. Environ. Microbiol. 58, 2219–2226.

    CAS  Google Scholar 

  • Forster, J. C.: 1995, ‘Determination of the water-holding capacity of soils’, in Alef, K. and Nannipieri, P. (eds.) Methods in Applied Soil Microbiology and Biochemistry, Academic Press, London.

    Google Scholar 

  • Fritsche, W.: 1992, ‘Degradation of xenobiotics by fungi’, in Preprints of International Symposium on Soil Decontamination Using Biological Processes, Karlsruhe, Germany. 6–9 December 1992. pp 31–36. Frankfurt am Main: Dechema.

    Google Scholar 

  • Harmsen, J., van den Toorn, A., Heersche, J., Riedstra, D. and van der Kooij, A.: 1999, ‘Use of residual substrate from mushroom farms to stimulate biodegradation of poorly available PAH’, in Leeson, A. and Alleman, B.C (eds.) Bioremediation Technologies for Polycyclic Aromatic Hydrocarbon Compounds, Battelle Press Columbus.

    Google Scholar 

  • Hofrichter, M., Günther, T. and Fritsche, W.: 1993, ‘Metabolism of phenol, chloro- and nitrophenols by the Penicillium strain Bi 7/2 isolated from a contaminated soil’, Biodegradation 3, 415–421.

    Article  CAS  Google Scholar 

  • Kirk, P.W.: 1969, ‘Isolation and culture of lignicolous marine fungi’, Mycologia 16, 174–177.

    Article  Google Scholar 

  • Kotterman, K., van Lieshout, J., Grotenhuis, T. and Field, J.: 1999, ‘Development of white rot fungal technology for PAH degradation’ in Leeson, A. and Alleman, B.C (eds.), Bioremediation Technologies for Polycyclic Aromatic Hydrocarbon Compounds, Battelle Press, Columbus.

    Google Scholar 

  • Lamar, R. T., Larsen, M. J., Kirk, T. K. and Glaser, J. A.: 1987, ‘Growth of the white rot fungus Phanerochaete Chrysosporium in soil’, in Land Disposal, Remedial Action, Incineration and Treatment of Hazardous Waste: Proceedings of the 13th Annual Research Symposium. US EPA.

  • Launen, L., Pinto, L., Wiebe, C., Kiehlmann, E. and Moore, M.: 1995, ‘The oxidation of pyrene and benzo(a)pyrene by nonbasidiomycete soil fungi’, Can. J. Microbiol. 41, 477–488.

    Article  CAS  Google Scholar 

  • Lees, Z. M.: 1996, ‘Bioremediation of oil-contaminated soil: A South African case study’, PhD thesis University of Natal, Pietermaritzburg, South Africa.

  • Loske, D., Hütterman, A., Majcherczyk, A., Zadrazil, F., Lorsen, H. and Waldinger, P.: 1989, ‘Use of white rot fungi for the clean-up of contaminated sites’, in Coughlan, M.P. and Amaral Collaço, M.T. (eds.) Advances in Biological Treatments of Lignocellulosic materials, Elsevier, London.

    Google Scholar 

  • MacGillivray, A. R. and Shiaris, M. P.: 1993, ‘Biotransformation of polycyclic aromatic hydrocarbons by yeasts isolated from coastal sediments’, Appl. Environ. Microbiol. 59, 1613–1618.

    CAS  Google Scholar 

  • Martens, R. and Zadrazil, F.: 1992, Screening of white rot fungi for their ability to mineralize polycyclic aromatic hydrocarbons in soil, in Preprints of International Symposium on Soil Decontamination Using Biological Processes, Karlsruhe, Germany. 6–9 December 1992. Dechema, Frankfurt am Main.

  • McGugan, B. R.: 1997, ‘Exploitation of indigenous fungi in low-cost ex-situ attenuation of oil-contaminated soil’, M.Sc. Thesis, University of Natal, Pitermaritzburg, South Africa.

  • Novotný, C., Erbanová, P., Šašek, V., Kubátová, A., Cajthaml, T., Lang, E., Krahl, J. and Zadrazil, F.: 1999, ‘Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white rot fungi’, Biodegredation 10, 159–168.

    Article  Google Scholar 

  • Pothuluri, J. V., Freeman, J. P., Evans, F. E. and Cerniglia, C. E.: 1990, ‘Fungal transformation of fluoranthene’, Appl. Environ. Microbiol. 56, 2974–2983.

    CAS  Google Scholar 

  • Pothuluri, J. V., Freeman, J. P., Evans, F. E. and Cerniglia, C. E.: 1992, ‘Fungal metabolism of acenaphthene by Cunninghamella Elegan’, Appl. Environ. Microbiol. 58, 3654–3659.

    CAS  Google Scholar 

  • Pozdnyakova, N., Turkovskaya, O., Ignatov, V.: 2001, ‘Degradation of oil hydrocarbons by White-Rot fungi’ in Proceedings of the First International Congress on Petroleum Contaminated soils, Sediments and Water, London. 14–17 August, 2001.

  • Raper, K. B. and Thom, C.: 1968, A manual of the Penicillia, Hafner Publishing Company, New York.

    Google Scholar 

  • Raymond, R. L., Hudson, J. O. and Jamieson, V. W.: 1976, ‘Oil degradation in soil’, Appl. Environ. Microbiol. 31, 522–535.

    CAS  Google Scholar 

  • Rodriguez, R., Montalvo, C. P., Dendooven, L., Esparza, F. G. and Fernandez, L. L.: 1999, ‘Degradation of benzo(a)pyrene by white rot fungi’ in Leeson, A. and Alleman, B.C. (eds.), Bioremediation Technologies for Polycyclic Aromatic Hydrocarbon Compounds Battelle Press, Columbus.

    Google Scholar 

  • Sack, U. and Fritsche, W.: 1997, ‘Enhancement of pyrene mineralization in soil by wood-decaying fungi’, FEMS Microb. Ecol. 22, 77–83.

    Article  CAS  Google Scholar 

  • Sack, U., Heinze, T. M., Deck, J., Cerniglia, C. E., Martens, R., Zadrazil, F. and Fritsche, W.: 1997, ‘Comparison of phenanthrene and pyrene degradation by different wood-decaying fungi’, Appl. Environ. Microbiol. 63, 3919–3925.

    CAS  Google Scholar 

  • Šašek, V., Volfová, O., Erbanová, P., Vyas, B. R. M. and Matucha, M.: 1993, ‘Degradation of PCBs by white rot fungi, methylotrophic and hydrocarbon utilizing yeasts and bacteria’, Biotechnol. Lett. 15, 521–526.

    Article  Google Scholar 

  • USEPA: 1986, Test Methods for Evaluating Soil Waste SW-846, Vol. I and II Nov. 1986

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harrison Ifeanychukwu Atagana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atagana, H.I., Haynes, R.J. & Wallis, F.M. Fungal Bioremediation of Creosote-Contaminated Soil: A Laboratory Scale Bioremediation Study Using Indigenous Soil Fungi. Water Air Soil Pollut 172, 201–219 (2006). https://doi.org/10.1007/s11270-005-9074-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-005-9074-x

Keywords

Navigation