Skip to main content
Log in

Simulation of Biodegradation in Infiltration Seepage— Model Development and Hydrodynamic Calibration

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Wastewater sanitation using infiltration seepage belongs to the attached growth treatment line for pollutant waste. In a specific geographical context, and for a population of approximately 500 to 1000 population equivalent, it seems to be a good choice. Despite its rustic reputation, it is a considerably complex treatment line. The aim of this study is to contribute—using numerical simulation—to the understanding of the physical and biochemical phenomena which develop inside an infiltration seepage bed. The aspects which are essential to bacterial activity—the hydrodynamics of the porous medium, the development of the active biomass, transport of substrate, oxygen transfer and consumption—are dealt with. The splitting operator technique is used; its advantage is the separate solution of the convection, dispersion and kinetics equations; each with appropriate numerical techniques. By testing a methodical verification of the model, based on the analytical solutions, we learn that the hydrodynamic dispersion and the rate of degradation have opposite effects on the efficiency in decreasing the pollution loads. Moreover, a significant result which is obtained is the evaluation of the oxygenation capacities in relation to some of the treatment line's key parameters. Finally, we carried out by experiments a successful calibration of the flow model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, B. and Davies I. J.: 1974, ‘The averall rate of substrate uptake (reaction) by microbial films, I, A biological rate equation’, Trans. Inst. Chem. Eng. 52, 248–259.

    CAS  Google Scholar 

  • Bancolé, A., Brissaud, F. and Gnagne, T.: 2003, ‘Oxidation processes and clogging in intermittent unsaturated infiltration’, Water Science and Technology 48(11–12), 139–146 © IWA Publishing 2003.

    Google Scholar 

  • Broadbridge, P. and White, I.: 1988, ‘Constant rate rainfall infiltration a versatile nonlinear model 1’, Analytic Solution. Water Resources Research 24(1), 145–154.

    Google Scholar 

  • Capdeville, B.R., Belkhadir, and Roques, H.: 1988, ‘Etude descriptive fondamentale et Modélisation de la croissance d'un film Biologique-II nouveau concept de modelisation de la croissance d'un film biologique’, Wat. Res. 22(1), 71–77.

    Article  CAS  Google Scholar 

  • Carrayrou, J.: 2001, ‘Modélisation du transport de solutés réactifs en Milieu poreux Saturés’, Thèse de doctorat en Mécanique. Université Louis Pasteur de Strasbourg, Strasbourg I, 248 p [in French].

  • Carsel, R. F. and Parrish, R. S.: 1988, ‘Developing joint probability distributions of soil water retention characteristics’, Water Resour. Res. 24, 755–769.

    Google Scholar 

  • Chen-Benito, C.: 1999, ‘Numerical simulation of biofilm growth in porous media’, Journal of Computational and Applied Mathematics 103, 55–66.

    Article  Google Scholar 

  • Cooper, P.: 2005, ‘The performance of vertical flow constructed wetland systems with special reference to the significance of oxygen transfer and hydraulic loading rates’, Water Science Technicole 51(9), 81–90.

    CAS  Google Scholar 

  • Currie, J. A.: 1960, ‘Gaseous diffusion in the aeration of aggregated soils’, Soil Science 92, 40–45.

    Article  Google Scholar 

  • Daus, A. D. and Frind, E. O.: 1985, ‘An alternating Galerkin technique for simulation of contaminant transport in complex groundwater system’, Water Resources Research 21(5), 653–664.

    CAS  Google Scholar 

  • Deb, A. K.: 1969, ‘Theory of sand filtration’, J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 95(SA3), 399–422.

    Google Scholar 

  • Fabritz, J., 1995, ‘A two dimensional numerical model for simulating the movement and biodegradation of contaminants in saturated aquifer’, Thesis, the University of Washington, Seattle, Washington, USA.

  • Fetter, C. W.: 1993, Contaminant hydrogeology macmillan publishing company, New York, USA.

    Google Scholar 

  • Headley, T. R., Davison, L. and Yeomans, A.: 2004, ‘Removal of ammonium-N from landfill leachate by vertical flow wetland: A pilot study. 9th international Confernce on Wetland Systems for Water Pollution Control. Avignon (France) 26–30th Sept 2004.

  • Frind, E. O.: 1982, ‘The principal direction technique: A new approach to groundwater contaminant transport modeling’, Finite Element in Water Ressources. K.O. Holz et al. (eds), Springer Verlag, Berlin: 13–23, 13–41.

  • Frind, E. O. and Germain, D.: 1986, ‘Simulation of contaminant plumes with large dispersive contrast: Evaluation of alternating direction Galerkin models’, Water Resources Research 22(13), 1857–1873.

    CAS  Google Scholar 

  • Hermanowicz Slawomir, W.: 1997, Biofilm structure: An interplay of models and experiments. Department of Civil and Environmental Engineering University of California, Berkeley, CA 94720–1710.

  • Insel, G. Ö., Karahan Gül, D., Orhon, P. A., Vanrolleghem, M. and Henze.: 2002, ‘Important limitations in the modeling of activated sludge—Biased calibration of the hydrolysis process’, Water Sci. Tech. 45(12), 23–36.

    CAS  Google Scholar 

  • Kayser, K. and Kunst, S.: 2005. ‘Processes in vertical-flow reeds beds—nitrification, oxygen transfer and soil clogging’, Water Sci. Tech. 51(9), 177–184.

    CAS  Google Scholar 

  • Kinzelbach, Wolfgang, Schäfer and Wolfgang: 1991, ‘Numerical modeling of natural and enhanced denitrification processes in aquifers’, Water Resources Research 27(6), 1123–1135.

    Article  CAS  Google Scholar 

  • Kruh, G. and Segall, E.: 1981, ‘Nitrogen dynamics in soil’, In Frissel M. J., Van Veen J. A. (eds.): Simulation of Nitrogen behaviour of soil-plant systems, pp. 126–144. Centre for Agricultural Publishing and Documentation. Pudoc, Wageningen, The Netherlands.

    Google Scholar 

  • Langergraber, G.: 2003, ‘Simulation of subsurface flow constructed wetlands—Results and further research needs’, Water Sci. Tech. 48(5), 157–166.

    CAS  Google Scholar 

  • Lehmann, F.: 1996, Hydrodynamique en milieux poreux hétérogènes non saturés: Identification des paramètres par approche inverse. Thèse de doctorat en Mécanique. Université Louis Pasteur de Strasbourg, Strasbourg I, 191 p. [in French].

  • MacQuarrie, K. T., Sudicky, E. A. and Frind, E. O.: 1990, ‘Simulation of Biodegradable Organic Compounds in Groundwater, 1, Numerical Formulation’ in Principal Directions’, Water Resources Research 26(2), 207–222.

    Article  CAS  Google Scholar 

  • Molz, F. J., Widdowson, M. A. and Benefield, L. D.: 1986. ‘Simulation of Microbial Growth Dynamics Coupled to Nutrient and Oxygen Transport’ in Porous Media’, Water Resources Research 22(8), 1207–1216.

    CAS  Google Scholar 

  • Morgenroth, E. and Wilderer, P. A.: 2000, ‘Influence of Detachement Mechanisms on Competition in Biofilms’, Wat. Res. 34(2), 417–426.

    Article  CAS  Google Scholar 

  • Mualem, Y.: 1976a, ‘A new model for predicting the hydraulic conductivity of unsaturated porous media’, Water Resour. Res. 12, 513–522.

    Article  Google Scholar 

  • Odencrantz, 1991, ‘Modeling The Biodegradation Kinetics of Dissolved Organic Contaminants’ in a Heterogeneous Two-dimensional Aquifer, PhD. Thesis, University of Illinois, Urbana-Champaign, Illinois, USA.

  • Poulsen Tjalfe., G.: 1991, ‘Behavior of Organic Pollutants’ in Unsaturated Soil, Ms. Thesis, Environnmental Engineering Laboratory, University of Aalborg, Denmark.

  • Raugh, W., Vanhooren, H. and Vanrolleghem, P.: 1999, ‘A simplified mixed-culture biofilm model’, Wat. Res. 33(9), 2148–2162.

    Article  Google Scholar 

  • Richards, L. A.: 1931, ‘Capillary conduction of liquids through porous mediums’, Physics 1, 318–333.

    Article  Google Scholar 

  • Rifai, H. S. and Bedient, P. B.: 1990, ‘Comparison of biodegradation kinetics with an instantaneous Reaction Model for Groundwater’, Water Resources, Research 26(4), 637–646.

    Article  CAS  Google Scholar 

  • Rittmann, B. E., 1982, ‘The effect of shear stress on biofilm loss rate’, Biotechnol.Bioeng. 24, 501–506.

    Article  Google Scholar 

  • Schwarz Benjamin, C. E., Joseph, S., Devinny Joseph, S. and Tsotsis Theodore, T.: 2001, ‘A Biofilter Network Model – Importance of the pore structure and other large-scale heterogeneities’, Chemical Engeering Science 56, 475–483.

  • Schwager, A. and Boller, M.: 1997, ‘Transport phenomena in intermittent filters’, Water Sci. Tech. 35(6), 13–20.

    Article  CAS  Google Scholar 

  • Taylor Stewart, W. and Jaffe Peter, R.: 1990, ‘Substrate and Biomass Transport in Porous Medium’, Water Resources Research 26(9), 2181–2194.

    Article  Google Scholar 

  • Tiwari, S. K. and Bowers, K. L.: 2001, Modeling Biofilm Growth for Porous Media Applications Mathematical and Computer Modelling 33, 299–319.

  • van Genuchten, M. Th.: 1980, ‘A closed-form equation for predicting the hydraulic conductivity of unsaturated soils’, Soil Sci. Soc. Am. J. 44, 892–898.

    Article  Google Scholar 

  • van Genuchten, M. Th., Leij, F. J. and Yates, S. R.: 1991, The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils, U.S. Salinity Laboratory, U.S. Department of Agriculture, Agricultural Research Service. Riverside, California 92501.

    Google Scholar 

  • Vasel Jean, Luc.: 2003, ‘Aération Naturelle dans les Procédés d'épuration à Biomasse fixée et les écosystèmes aquatiques’ Dans: Transferts Gaz-liquide dans les procédés de traitement des eaux et des effluents gazeux © Lavoisier, 2003 ISBN: 2-7430-0605-6, pages 445–482. [in French].

  • Viotti, P., Eramo, B., Boni, M. R., Carucci, A., Leccese, M. and Sbaffoni.: 2002, ‘Development and calibration of a mathematical model for the simulation of the biofiltration process’, Advances in Environmental Research 7, 11–33.

    Article  CAS  Google Scholar 

  • Warrick, A. W., Lomen, D. O. and Islas, A., 1990, ‘An analytical solution to Richards equation for a draining soil profile’, Water Resources Research 26(2), 253–258.

    Article  Google Scholar 

  • Wanko, A., Mose, R. and Lienard, A.: 2004, ‘Distribution des temps de séjour en infiltration percolation: Performance de deux types de sable’, Techniques Sciences Méthodes 4, 63–71.

    Google Scholar 

  • Wanko, A., Mose, R. and Beck, C.: 2005, ‘Biological Processing Capacities and Biomass Growth’ In Waste Water Treatment By Infiltration On Two Kind Of Sand’, Water, Air, and Soil Pollution (Accepted 17 April 2005).

  • Wheeler, M. F. and Dawson, C. N.: 1987, An Operator-Splitting Method for Advection- Diffusion-Reaction Problems. Departement of Mathematical Sciences, Technical Report 87-9, Rice University. Houston, Texas, USA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Wanko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wanko, A., Mose, R., Carrayrou, J. et al. Simulation of Biodegradation in Infiltration Seepage— Model Development and Hydrodynamic Calibration. Water Air Soil Pollut 177, 19–43 (2006). https://doi.org/10.1007/s11270-005-9046-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-005-9046-1

Keywords

Navigation