Skip to main content
Log in

Behaviour of Reduction–Sorption of Chromium (Vi) from an Aqueous Solution on a Modified Sorbent from Rice Husk

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

A carbonaceous sorbent produced from rice husk via sulphuric acid treatment was used to remove Cr(VI) from aqueous solutions varying contact time, pH, Cr(VI) concentration and sorbent status (wet and dry). Cr(VI) was removed from the aqueous solution via reduction to Cr(III) and sorption. Reduction and sorption processes were investigated in terms of kinetics and equilibrium. The rate of reduction removal of Cr(VI) at pH 2 followed a pseudo first-order model while the rate of sorption of total chromium followed pseudo second-order model. Chromium sorption was highly dependent on the initial pH value with reduction taking place in solution with pH up to 7 showing sorption maxima in the pH range 1.8–2.8 for concentration range 100–500 mg/l with an increase in the equilibrium pH. Carbon dioxide evolved from the sorption media was determined. Reduction–sorption mechanism was investigated via physicochemical tests including cation exchange capacity, base neutralization and sorbent acidity in addition to FTIR studies for sorbent samples before and after sorption reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armesto, L., Bahillo, A., Veijonen, K., Cabanillas, A. and Otero, J.: 2002, ‘Combustion behaviour of rice husk in a bubbling fluidised bed’, Biomass Bioenerg. 23, 171–179.

    Article  CAS  Google Scholar 

  • ASTM: Annual book of ASTM Standards: 1996a, ‘Standard test method for moisture in activated carbon’, D2867-95, 15.01, 500.

  • ASTM: Annual book of ASTM Standards: 1996b, ‘Standard test methods for chromium in water’, D 1687-92, 11.01, 162–167.

  • ASTM: Annual book of ASTM Standards: 1996c, ‘Standard test method for total ash content of activated carbon’, D 2866-94, 15.01, 498.

  • ASTM: Annual book of ASTM Standards: 1996d, ‘Standard test methods for carbon black – pH value’, D1512-95, 9.01, 293–296.

  • ASTM: Annual book of ASTM Standards: 1996e, ‘Standard test method for pH of activated carbon’, D3838-80, 15.01, 531–532.

  • Boehm, H. P.: 1996, ‘Chemical identification of surface groups’ in Advances in Catalysis, vol. 16, Academic Press, New York. p. 179.

    Google Scholar 

  • Chen, P., Kou, K. L., Tai, H. K., Jin, S. L., Lye, C. L. and Lin, C. Y.: 2002, ‘Removal of carbon dioxide by reactive crystallization in a scrubber – Kinetics of barium carbonate crystals’, J. Cryst. Growth 237(3), 2166–2171.

    Google Scholar 

  • Cox, M., El-Shafey, E. I., Pichugin, A. A. and Appleton, Q.: 1999, ‘Preparation and characterisation of a carbon adsorbent from flax shive by dehydration with sulphuric acid’, J. Chem. Tech. Biotechnol. 74, 1019–1029.

    CAS  Google Scholar 

  • Cox, M., El-Shafey, E. I., Pichugin, A. A. and Appleton, Q.: 2000, ‘Removal of mercury (II) from aqueous solution on a carbonaceous sorbent prepared from flax shive’, J. Chem. Tech. Biotechnol. 75, 1–9.

    Google Scholar 

  • Eaton, A. D., Clesceri, L. S. and Greenberg, A. E.: 1995, Standard Methods for the Examination of Water and Wastewater, 19th edn., American Public Health Association, Washington, DC.

    Google Scholar 

  • El-Shafey, E. I., Cox, M., Pichugin, A. A. and Appleton, Q.: 2002, ‘Application of a carbon sorbent for the removal of cadmium and other heavy metal ions from aqueous solution’, J. Chem. Tech. Biotechnol. 77, 429–436.

    CAS  Google Scholar 

  • Erdem, M., Gur, F. and Tumen, F.: 2004, ‘Cr(VI) reduction in aqueous solutions by siderite’, J. Hazard. Mater. B113, 217–222.

    Google Scholar 

  • Faust, S. D. and Aly, O. M.: 1987, Adsorption Processes for Water Treatment, Butterworths, London.

    Google Scholar 

  • Gatellier, J. P. and Disnar, J. R.: 1990, ‘Kinetics and mechanism of the reduction of Au (III) to Au (0) by sedimentary organic materials’, Org. Geochem. 16(1–3), 631–640.

    CAS  Google Scholar 

  • Gomez-Serrano, V., Acedo-Ramos, M., Lopez-peinado, A. J. and Valenzula-Calahorro, C.: 1994, ‘Oxidation of activated carbon by hydrogen peroxide: Study of surface functional groups by FT-ir’, Fuel 73(3), 387–395.

    CAS  Google Scholar 

  • Gundogan, R., Acemioglu, B. and Alma, M. H.: 2004, ‘Copper (II) adsorption from aqueous solution by herbaceous peat’, J. Colloid Interf. Sci. 269, 303–309.

    CAS  Google Scholar 

  • Ho, Y. S. and Mckay, G.: 1998, ‘Sorption of dye from aqueous solution by peat’, Chem. Eng. J. 70, 115–124.

    CAS  Google Scholar 

  • Ho, Y. S. and Mckay, G.: 1999, ‘Pseudo-second order model for sorption processes’, Process Biochem. 34, 451–465.

    CAS  Google Scholar 

  • Huang, C. P. and Wu, M. H.: 1975, ‘Chromium removal by carbon adsorption’, J. Water Pollut. Control Fed. 47(10), 2437–2446.

    CAS  Google Scholar 

  • Huang, C. P. and Wu, M. H.: 1977, ‘The removal of chromium (VI) from dilute aqueous solution by activated carbon’, Water Res. 11, 673–679.

    CAS  Google Scholar 

  • Kim, J. I. and Zoltek, J.: 1977, ‘Chromium removal with activated carbon’, Prog. Water Technol. 9, 143–155.

    CAS  Google Scholar 

  • Kinoshita, K.: 1988, Carbon: Electrochemical and Physicochemical Properties, Wiley, New York, Chap. 3, pp. 86–173.

    Google Scholar 

  • Kirk-Othmer: 1967, Encyclopedia of Chemical Technology, 2nd edn., vol 3, John Wiley & Sons, New York, p. 90.

    Google Scholar 

  • Mahajan, O. P., Youssef, A. and Walker, P. L., Jr.: 1978, ‘Surface-treated activated carbon for removal of ammonia from water’, Sep. Sci. Technol. 13(6), 487–499.

    CAS  Google Scholar 

  • Manahan, S. E.: 1991, Environmental Chemistry, 5th edn., Lewis Publishing, London.

    Google Scholar 

  • Mise, S. R. and Shantha, G. M. M.: 1993, ‘Adsorption studies of chromium (VI) from synthetic aqueous solution by activated carbon derived from bagasse’, J. Environ. Sci. Health A28, 10, 2263–2280.

    Google Scholar 

  • Namasivayam, C. and Yamuna, R. T.: 1995, ‘Adsorption of chromium (VI) by a low cost adsorbent: Biogas residual slurry’, Chemosphere 30(3), 561–578.

    CAS  Google Scholar 

  • Park, S. J., Jang, Y. S., Shim, J. W. and Ryu, S. K.: 2003, ‘Studies on pore structures and surface functional groups of pitch-based activated carbon fibres’, J. Colloid Interf. Sci. 260, 259–264.

    CAS  Google Scholar 

  • Parker, S. P.: 1967, McGraw-Hill Encyclopaedia of Science & Technology, 8th edn., vol. 17, McGraw-Hill, London, pp. 633–634.

    Google Scholar 

  • Perez-candela, M., Martin-matrinez, J. M. and Torregrosa-macia, R.: 1995, ‘Chromium (VI) removal with activated carbons’, Water Res. 29(9), 2174–2180.

    CAS  Google Scholar 

  • Ramos, R. L., Martinez, A. J. and Coronado, R. M. G.: 1994, ‘Adsorption of chromium (VI) from aqueous solutions on activated carbon’, Water Sci. Technol. 30(9), 191–197.

    Google Scholar 

  • Richard, F. C. and Bourg, A. C. M.: 1991, ‘Aqueous geochemistry of chromium: A review’, Water Res. 25(7), 807–816.

    CAS  Google Scholar 

  • Rivin, D.: 1963, ‘Use of lithium aluminium hydride in the study of surface chemistry of carbon black’, Rubber Chem. Technol. 36, 729–739.

    CAS  Google Scholar 

  • Sharma, D. C. and Forster, C. F.: 1993, ‘Removal of hexavalent chromium using sphagnum moss peat’, Water Res. 27(7), 1201–1208.

    CAS  Google Scholar 

  • Sharma, D. C. and Forster, C. F.: 1994a, ‘A preliminary examination into the adsorption of hexavalent chromium using low-cost adsorbents’, Bioresource Technol. 47, 257–264.

    CAS  Google Scholar 

  • Sharma, D. C. and Forster, C. F.: 1994b, ‘The treatment of chromium wastewaters using the sorptive potential of leaf mould’, Bioresource Technol. 49(1), 31–40.

    CAS  Google Scholar 

  • Sharma, D. C. and Forster, C. F.: 1996, ‘Removal of hexavalent chromium from aqueous solutions by granular activated carbon’, Water SA 22(2), 153–160.

    CAS  Google Scholar 

  • Singh, V. K. and Tiwari, P. N.: 1997, ‘Removal and recovery of chromium (VI) from industrial waste water’, J. Chem. Tech. Biotechnol. 69, 376–382.

    CAS  Google Scholar 

  • Thrope, V. A.: 1973, ‘Collaborative Study of The Cation Exchange Capacity of Peat Materials’, J. AOAC 56(1), 154–156.

    Google Scholar 

  • United States Environmental Protection Agency (US EPA): 1980, ‘Ambient water quality criteria for chromium’, EPA 440/5-80-035, pp.PC31.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. El-Shafey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Shafey, E.I. Behaviour of Reduction–Sorption of Chromium (Vi) from an Aqueous Solution on a Modified Sorbent from Rice Husk. Water Air Soil Pollut 163, 81–102 (2005). https://doi.org/10.1007/s11270-005-8136-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-005-8136-4

Keywords

Navigation