Water, Air, and Soil Pollution

, Volume 166, Issue 1–4, pp 303–319 | Cite as

Heavy Metals in Soil Treated with Sewage Sludge Composting, their Effect on Yield and Uptake of Broad Bean Seeds (Vicia faba L.)

  • S. Garrido
  • G. Martin Del Campo
  • M. V. Esteller
  • R. Vaca
  • J. Lugo


The final use that may be given to biosolids that result from the treatment of residual municipal waters depends on their physicochemical and microbiological characteristics. Their organic matter content and wealth of essential elements may allow their use for agricultural fertilization purposes. The objective of this research project was to evaluate the physicochemical interactions between soil treated with biosolids and compost from municipal residual waters, and the nutritional parameters of broad bean seeds (Vicia faba L.). The studied area is located in the central region of the Mexican Republic. The biosolids were treated with aerated static pile composting. The experimental work was performed in the area surrounding the East Toluca Macroplant, where nine 2 × 3 m plots were defined and distributed in a Latin square; 3 plots were used as controls (without conditioning), 3 were conditioned with 4.5 Mg ha−1 of biosolids on a dry base, and 3 were conditioned with the same amount of compost. The parameters determined for biosolids, compost, and soil were: pH, electrical conductivity (EC), organic matter (OM), total nitrogen, available phosphorus, cation exchange capacity (CEC), exchangeable cations (Ca, Mg, Na and K), total and available heavy metals (Cd, Cr, Cu, Ni and Zn); for the plant: height reached, green seeds productivity and yield per treatment (ton ha−1); for the seeds: humidity, ashes, fiber, fats, protein, starch and total and available heavy metals (Cd, Cr, Cu, Ni and Zn). pH was slightly acid in soil treated with biosolids (6.71). OM and CEC did not represent significant differences. Total concentrations of Cr, Zn, Ni and Cu in soil presented significant differences (p < 0.05) between treated soil and the control, Cd was not detected. Cu was the most available metal in soil treated with compost (15.31%), Cd and Cr were not detected. The plants had higher growth rates with biosolids (112.22 cm) and compost (103.73 cm); higher green broad bean productivity and higher seed yield, especially in plots containing biosolids, which had rates three times higher than the control. In regards to broad bean seeds, content of ashes, fiber, fats, protein, starch and heavy metals (Cu, Ni and Zn), there were no significant differences between the treatments. Cd and Cr were not detected. In conclusion, it has been proven that the use of biosolids and compost studied in this broad bean crop do not involve an environmental risk, and thus give way to a solution to the problem of final disposition of biosolids in the region.


Agricultural land application biosolids compost heavy metals nutritional quality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberici, T. M., Sopper, W. E., Storm G. L. and Yahner, R. H.: 1989, ‘Trace metals in soil, vegetation and voles from mine land treated with sewage sludge’, J. Envion. Qual. 18, 115–120.Google Scholar
  2. Alloway, B. J.: 1990, Heavy Metals in Soils, John Wiley and Sons, New York.Google Scholar
  3. Association of Official Analytical Chemists (AOAC): 1990, Official Methods of Analysis, vol. II, AOAC, Washington, DC.Google Scholar
  4. APHA, AWWA, WEF: 1995, Standard Methods for the Examination Water and Wastewater, 19th edn., APHA, AWWA & WEF. Washington, D.C.Google Scholar
  5. Baron, M., Arellano, J. B. and Lopez, G. J.: 1995, ‘Copper and photosystem II. A controversial relationship’, Physiol. Plant. 94, 174–180.CrossRefGoogle Scholar
  6. Bateman, J. V.: 1970, Manual de métodos analíticos. Ed. Herrero Hermanos. Mexico.Google Scholar
  7. Binder, D. L., Dobermann, A., Sander, D. H. and Cassman, K. G.: 2002, ‘Biosolids as nitrogen source for irrigated maize and rainfed sorghum’, Soil Sci. Soc. Am. J. 66, 531–543.Google Scholar
  8. Bohn, H. L., Mcneal, B. L. and O’Connor, G. A.: 1993, Quimica de suelos, LIMUSA Mexico.Google Scholar
  9. Bouyoucos, G. J.: 1963, ‘Directions for making mechanical analysis of soil by hydrometer method’, Soil Sci. 42, 23–30.Google Scholar
  10. Bray, R. H. and Kurt, L. T.: 1966, ‘Determination of total, organic and available forms of phosphates in soils’, Soil Sci. 59, 39–45.Google Scholar
  11. Bremner, J. M.: 1996, Nitrogen-Total. p. 1103–1108. In Sparks DL. Ed. Methods of soil analysis. Part 3 Chemical methods. SSSA Book Ser. 5. SSSA, Madison, WI.Google Scholar
  12. Brofas, G., Michopoulos, P. and Alifragis, D.: 2000, ‘Sewage sludge as an amendment for calcareous bauxite mine spoils reclamation’, J. Environ. Qual. 29, 811–816.Google Scholar
  13. Carmona, A., Garcia, M. and Azaola, E.: 1994, Determinación de las condiciones óptimas para la obtención de compostas de alta calidad agronómica. Biotecnología. Revista de la Sociedad Mexicana de Biotecnología y Bioingeniería, AC. 34, 12–20.Google Scholar
  14. Castellanos, J. Z., Uvalle, B. J. and Aguilar, S. A.: 2000, Manual de interpretación de análisis de suelos y aguas. Instituto de Capacitación para la Productividad Agrícola. 2a edn. Mexico.Google Scholar
  15. Cervantes, C.: 1999, Contaminación ambiental por metales pesados. Ed. A.G.T. 1a edn. Mexico.Google Scholar
  16. Chapman H. D.: 1973, Métodos de análisis para suelos, plantas y aguas Trillas. Mexico.Google Scholar
  17. Chaven, J. K., Kute, L. S. and Kadam, S. S.: 1989, Hand Book of World Legumes. Ed. Salonkhe and S. S. and Kadman. Florida U.S.A.Google Scholar
  18. Cripps, W., Winfree, S. K. and Reagan, J. L.: 1992, ‘Effects of sewage sludge application method on corn production’, Soil. Sci. Plant Anal. 23, 1705–1715.Google Scholar
  19. Darmody, R. G., Foss, J. E., McIntosh, M. and Wolf, D. C.: 1983, ‘Municipal sewage sludge compost amended soils: Some spatiotemporal treatment effects’, J. Environ. Qual. 12, 231–235.Google Scholar
  20. Elliot, H. A., O’Connor, G. A. and Brinton, S.: 2002, ‘Phosphorus leaching from biosolids-amended sandy soils’, J. Environ. Qual. 31, 681–689.PubMedGoogle Scholar
  21. EPA (Environmental Protection Agency): 1985, Composting of municipal wastewater sludges. EPA/625/4-85/014. Cincinnati Ohio, USA.Google Scholar
  22. EPA (Environmental Protection Agency): 1988, Sampling procedures and protocols for the national sewage sludge survey. WH-552, EPA, Office of Water Regulations and Standards. Washington D.C., USA.Google Scholar
  23. FAO-UNESCO: 1990, Soil Map of the World, revised legend. World Soil Resour. Rep. 60 FAO, Rome.Google Scholar
  24. Garrido, S. E., Vilchis, J. A., Andre, C., García, J. J., Alvarez, A. and Gorostieta, E.: 2002, ‘Aerobic thermophilic composting of wastewater sludge’, Resources, Conservation and Recycling 34, 161–173.Google Scholar
  25. Gomez, B. G.: 1998, Variación estacional de metales pesados en lodos residuales de la planta Toluca Oriente México. Tesis de Licenciatura, Facultad de Ciencias, Universidad Autónoma de México. Mexico. 72 pp.Google Scholar
  26. He, X. T., Traina, S. J. and Logan, T. J.: 1992, ‘Chemical properties of municipal solid waste composts’, J Environ. Qual. 21, 318–329.Google Scholar
  27. INEGI (Instituto Nacional de Estadística, Geografía e Informática): 1995, El Sector Alimentario en México.Google Scholar
  28. INEGI (Instituto Nacional de Estadística, Geografía e Informática): 1999, Anuario Estadístico del Estado de México. Mexico.Google Scholar
  29. Jackson, L. M.: 1982, Análisis Químico de Suelos, 4a edn., Omega, Barcelona, España.Google Scholar
  30. James, B. R. and Aschmann, S. G.: 1992, ‘Soluble phosphorus in a forest soil Ap horizon amended with municipal wastewater sludge or compost’, Soil. Sci. Plant Anal 23(7–8), 861–875.Google Scholar
  31. Kabata-Pendias, A.: 1995, ‘Agricultural problems related to excessive trace metal contents of soils’, in W. Salomons, U. Förstner and P. Mader (eds.), Concerning Heavy Metals: Problems and Solutions, Springer-Verlag, Berlin, Heidelberg. New York. Printed in Germany, pp 19–31.Google Scholar
  32. Kabata-Pendias, A. and Pendias, H.: 2001, Trace Elements in Soils and Plants, 3a edn., Edition CRC Press, Boca Ratón, FL. 413 pp.Google Scholar
  33. Kay, D. E.: 1979, Legumbres Alimenticias. Ed. ACRIBIA Zaragoza. España.Google Scholar
  34. Kloke, A., Sauerbeck, D. R. and Vetter, H.: 1984, The contamination of plants and soils with heavy metals and the transport of metals in terrestrial food chains. Changing metal cycles and human health. Ed. Dahlem. Berlin. 113 pp.Google Scholar
  35. Korboulewsky, N., Dupouyet, S. and Bonin, G.: 2002, ‘Environmental risks of applying sewage sludge compost to vineyards: Carbon, heavy metals, nitrogen and phosphorus accumulation’, J. Environ. Qual. 31, 1522–1527.PubMedGoogle Scholar
  36. Korentajer, L.: 1991, ‘A review of the agricultural use of sewage sludge: Benefits and potential hazards’, Water, Air and Soil Pollution 17(3), 189–196.Google Scholar
  37. Kuhlman, L. R.: 1990, ‘Windrow composting of agricultural and municipal wastes’, Resources, Conservation and Recycling 4, 151–160.Google Scholar
  38. Lester, J. N.: 1987, Heavy metals in wastewater and sludge treatment processes. Vol. II. Treatment and Disposal. CRC Press, Inc. Florida. USA.Google Scholar
  39. Lindsay, W. L. and Norvell, W. A.: 1978, ‘Development of DTPA soil test for zinc, iron, manganese and cooper’, Soil. Sci. Soc. Am. J. 42, 421–428.Google Scholar
  40. Logan, T. J., Chang, A. C., Page, A. L. and Ganje, T. J.: 1987, ‘Accumulation of selenium in crops grown on sludge treated soil’, J. Environ. Qual. 16(4), 349–352.Google Scholar
  41. Lu, P. and O’Connor, G. A.: 2001, ‘Biosolids effects on phosphorus retention and release in some sandy Florida Soils’, J. Environ. Qual. 30, 1059–1063.PubMedGoogle Scholar
  42. Macnicol, R. D. and Beckett, P. H. T.: 1985, ‘Critical tissue concentrations of potentially toxic elements’, Plant Soil 85–87.Google Scholar
  43. Nikolaidis, N. P., Chheda, P., Lackovic, J. A., Guillard, K., Simpson, B. and Pedersen, T.: 1999, ‘Nitrogen mobility in biosolid-amended glaciated soil’, Water Environ. Res. 71(3), 368–376.Google Scholar
  44. NOM-004-SEMARNAT-2002, Protección ambiental. Lodos y biosólidos. Especificaciones y límites máximos permisibles de contaminantes para su aprovechamiento y disposición final. Secretaria de Medio Ambiente y Recursos Naturales. México. Diario Oficial de la Federación. Mexico, 15 de agosto de 2003.Google Scholar
  45. NOM-F-90-S-1978, Determinación de grasa por el método de Goldfish. Diario Oficial de la Federación. Mexico.Google Scholar
  46. NRC (National Research Council): 1996, Use of Reclaimed Water and Sludge in Food Crop Production, National Academies Press, Washington D. C.Google Scholar
  47. Oberhaster, G.: 1991, ‘South African practice in land disposal of sludge, including legislation and health aspects’, Wat. Sci. Tech 15, 151–155.Google Scholar
  48. Otte, M. L. and Wijte, A. H. B. M.: 1993, ‘Environmental variation between habitats and uptake of heavy metals by Urtica dioica’, Environ. Monitoring and Assess. 25, 263–275.CrossRefGoogle Scholar
  49. Page, A. L., Gleason, T. L., Iskandar, I. K. and Sommers, L. E.: 1983, Utilization of municipal wastewater and sludge on land. Proc. Workshop USEPA. University of California, USA.Google Scholar
  50. Piatkin, K: 1986, Microbiología, Editorial MIR Moscu. 2nd edn., USSR.Google Scholar
  51. Porta, J., Lopez, A. M. and Roquero, C.: 1999, Edafología para la agricultura y el medio ambiente, Mundi Prensa, Spain.Google Scholar
  52. Reichman, S. M.: 2002, The responses of plants to metal toxicity: A review focusing on copper, manganese and zinc. Ed. Australian Minerals & Energy Environment Foundation. Australia.Google Scholar
  53. SAGAR, Secretaria de Agricultura: 1995, Anuario Estadístico de la Producción Agrícola de los Estados Unidos Mexicanos. Tomo I. Centro de Estadística Agropecuario. Mexico.Google Scholar
  54. SARH, Secretaria de Agricultura y Recursos Hidráulicos: 1990, Anuario estadístico de la producción agrícola de los Estados Unidos Mexicanos. Tomo I. Datos Básicos Agrícolas de la Subdelegación de Planeación, Estado de México. Mexico.Google Scholar
  55. Scott, B. and Ahlstrom, P. E.: 1985, ‘Irradiation of municipal sludge for agricultural use’, Radiat. Chem. 28, 1–3.Google Scholar
  56. Siddique, M. T., Robinson, J. S. and Alloway, B. J.: 2000, ‘Phosphorus reactions and leaching potential in soils amended with sewage sludge’, J. Environ. Qual. 29, 1931–1938.Google Scholar
  57. Sterritt, R. M. and Lester, J. N.: 1980, ‘Concentrations of heavy metals in forty sewage sludges in England’, Water Air and Soil Pollution 14, 125–131.CrossRefGoogle Scholar
  58. TCCA. The Composting Council: 1993, Compost Facility Operating Guide. VA, USA: Alexandria.Google Scholar
  59. Tisdale, S. L. and Nelson, W. L.: 1982, Fertilidad de los suelos y fertilizantes. Mexico City. Mexico.Google Scholar
  60. Tomsett, A. B. and Thurman, D. A.: 1988, ‘Molecular biology of metal tolerances of plants’, Plant Cell Environ. 11, 383–394.Google Scholar
  61. Thorne, M. E., Zamora, B. A. and Kennedy, A. C.: 1998, ‘Sewage sludge and mycorrhizal effects on secar bluebunch wheatgrass in mine spoil’, J. Environ. Qual. 27, 1228–1233.Google Scholar
  62. Vaca Paulin, R.: 1999, Especiación de metales pesados en suelos y sedimentos de la cuenca alta y media del río Lerma. Tesis de Maestría. Facultad de Ciencias, División de Estudios de Posgrado. Universidad Nacional Autónoma de México (UNAM). México D.F.Google Scholar
  63. Van Loon, J. C.: 1998, Selected methods of trace metal analysis. Biological and environmental samples. Vol 18 Department of Geology and Chemistry and the Institute of Environmental Studies. University of Toronto. Wiley Science Publication. Toronto, Canada.Google Scholar
  64. Vangronsveld, J. and Clijsters, H.: 1994, Plants and the chemical elements (Biochemistry, uptake, tolerance and Toxicity) VCH Weinheim.Google Scholar
  65. Zeiger, E. and Taiz, L.: 1998, Plant Physiology, Sinauer Associates, Inc Publisher 2a Ed. Massachusetts.Google Scholar
  66. Zhu, B. and Alva, A. K.: 1993, ‘Differential adsorption of trace metals by soils as influenced by exchangeable cations and ionic strength’, Soil Sci 155, 61–66.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • S. Garrido
    • 1
  • G. Martin Del Campo
    • 2
  • M. V. Esteller
    • 2
  • R. Vaca
    • 3
  • J. Lugo
    • 3
  1. 1.Instituto Mexicano de Tecnologia del Agua (IMTA)C.P.Mexico
  2. 2.Centro Interamericano de Recursos del Agua (CIRA)Universidad Autónoma del Estado de MéxicoMéxico
  3. 3.Facultad de Ciencias AgrícolasUniversidad Autónoma del Estado de MéxicoMéxico

Personalised recommendations