Skip to main content
Log in

Predicting Recovery from Acidic Deposition: Applying a Modified TAF (Tracking and Analysis Framework) Model to Maine (USA) High Elevation Lakes

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

We adapted a reduced-form model, built to predict the aquatic effects of alternative nitrogen and sulfur emissions scenarios on Adirondack lakes, New York, for use on high elevation lakes of Maine (HELM), USA. The Tracking and Analysis Framework (TAF) model was originally designed to evaluate the biotic, economic, and health effects of acid deposition. The TAF model developed in our study was used to assess the biotic effects of different levels of sulfate deposition resulting from alternative emissions scenarios. The aquatic portion of the model is based on a lumped-parameter watershed chemistry model, MAGIC (Model of Acidification of Groundwater in Catchments). The original TAF model was built by calibrating MAGIC to 33 lakes in the Adirondack Mountains. We calibrated MAGIC to 78 HELM lakes, and built reduced-form models from these MAGIC predictions. We evaluated TAF predictions of acid neutralizing capacity (ANC), a fish acid stress index (ASI), and the probability of fish presence in 2030 for four different SO2 emissions-reduction scenarios. The most dramatic emissions reduction scenario produced only modest increases in mean ANC (16.8 μeq/L ± 7.9 μeq/L) and slight increases in mean predicted probability of presence of acid-sensitive fish (0.07± 0.09) across all lakes. However, a small number of lakes were predicted to have more substantial increases in ANC and improvements in other conditions for acid-sensitive fish. Our results reflect the reality that many of the high elevation lakes of Maine historically had low ANC and that some were even acidic in pre-industrial times. Thus, ’recovery’ for most of the high elevation lakes of Maine will be modest under any scenario of reduced acidic deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, J. P., Bernard, D. P., Christensen, S. W., Scale, M. J., Freda, J., Heltcher, K., Marmorek, D., Rowe, L., Scanlon, P., Suter, G., Waren-Hicks, W. and Welbourn, P.: 1990, ‘Biological effects of changes in surface water acid-base chemistry’, NAPAP Report 13 in: State of Science and Technology, Volume II, National Acid Precipitation Assessment Program, Washington, D.C.

  • Bloyd, C., Camp, J., Conzelmann, G., Formento, J., Molburg, J., Shannon, J., Henrion, M., Sonnenblick, R., Soo Hoo, K., Kalagnanam, J., Siegel, S., Sinha, R., Small, M., Sullivan, T., Marnicio, R., Ryan, P., Turner, R., Austin, D., Burtraw, D., Farrell, D., Green, T., Krupnick, T. and Amnsur, E.: 1996, ‘Tracking and Analysis Framework (TAF) Model Documentation and User’s Guide’. Argonne National Laboratory, US Department of Energy, ANL/DIS/TM-36.

  • Burtraw, D., Krupnic, A., Mansur, E., Austin, D. and Farrell, D.: 1998, ‘Costs and benefits of reducing air pollutants related to acid rain’, Contemporary Economic Policy 16, 379–400.

    Google Scholar 

  • Church, M. R., Thornton, K. W., Shaffer, P. W., Stevens, D. L., Rochelle, B. P., Holdren, G. R., Johnson, M. G., Lee, J. J., Turner, R. S., Cassell, D. L., Lammers, D. A., Campbell, W. G., Liff, C. I., Brandt, C. C., Liegel, L. H., Bishop, G. D., Mortenson, D. C., Pierson, S. M. and Schmoyer, D. D.: 1989, Direct/Delayed Response Project: Future Effects of Long-Term Sulfur Deposition on Surface Water Chemistry in the Northeast and Southern Blue Ridge Province. US Environmental Protection Agency, EPA/600/3-89/061, Washington, DC. 887 pp.

  • Church, M. R., Shaffer, P. W., Thornton, K. W., Cassell, D. L., Liff, C. I., Johnson, M. G., Lammers, D. A., Lee, J. J., Holdren, G. R., Kern, J. S., Liegel, L. H., Pierson, S. M., Stevens, D. L., Rochelle, B. P. and Turner, R. S.: 1992, Direct/Delayed Response Project: Future Effects of Long-Term Sulfur Deposition on Stream Chemistry in the Mid-Appalachian Region of the Eastern United States. US Environmental Protection Agency, EPA/600/R-92/186, NTIS PB92-232370/AS, Washington, D.C. 384 pp.

  • Church, M. R. and Van Sickle, J.: 1999, ‘Potential relative future effects of sulfur and nitrogen deposition on lake chemistry in the Adirondack Mountains, United States’, Water Resources Research 35, 2199–2211.

    Article  Google Scholar 

  • Cosby, B. J., Ferrier, R. C., Jenkins, A. and Wright, R. F.: 2001, ‘Modelling the effects of acid deposition: Refinements, adjustments and inclusion of nitrogen dynamics in the MAGIC model’, Hydrology and Earth System Sciences 5, 499–517.

    Google Scholar 

  • Cosby, B. J., Hornberger, G. M. and Galloway, J. N.: 1985a, ‘Modeling the effects of acid deposition: Assessment of a lumped parameter model of soil water and stream water chemistry’, Water Resource Research 21, 51–63.

    Google Scholar 

  • Cosby, B. J., Hornberger, G. M. and Galloway, J. N.: 1985b, ‘Modeling the effects of acid deposition: Estimation of long-term water quality responses in a small forested catchment’, Water Resources Research 21, 1591–1601.

    Google Scholar 

  • Cosby, B. J., Hornberger, G. M., Galloway, J. N. and Wright, R. F.: 1985c, ‘Time scales of catchment acidification: A quantitative model for estimating freshwater acidification’, Environmental Science and Technology 19, 1145–1149.

    Article  Google Scholar 

  • Cumming, B. F., Smol, J. P., Kingston, J. C., Charles, D. F., Birks, H. J. B., Camburn, K. E., Dixit, S. S., Uutala, A. J. and Selle, A. R.: 1992, ‘How much acidification has occurred in Adirondack Region Lakes (New York, USA) since preindustrial times?’, Canadian Journal of Fisheries and Aquatic Science 49, 128–141.

    Google Scholar 

  • Driscoll, C. T., Johnson, N. M., Likens, G. E. and Feller, M. C.: 1988, ‘The effects of acidic deposition on stream water chemistry: A comparison between hubbard Brook, New Hampshire, and Jamieson Creek, British Columbia’, Water Resources Research 24, 195–200.

    Google Scholar 

  • Driscoll, C. T., Lawrence, G. B., Bulger, A. J., Butler, T. J., Cronan, C. S., Eagar, C., Lambert, K. F., Likens, G. E., Stoddard, J. L. and Weathers, K. C.: 2001, ‘Acidic deposition in the northeastern United States: Sources and inputs, ecosystem effects, and management strategies’, Bioscience 51, 180–198.

    Google Scholar 

  • Fernandez, I. J., Rustad, L. E., Norton, S. A., Kahl, S. J. and Cosby, B. J.: 2000, ‘Experimental acidification causes soil base cation depletion in a New England forested watershed’, Soil Science Society of America Journal 67, 1909–1919.

    Google Scholar 

  • Grimm, J. W. and Lynch, J. A.: 1997, Enhanced Wet Deposition Estimates Using Modeled Precipitation Inputs, Final Report to the USDA Forest Service, Northeast Forest Experiment Station, Northern Global Change Research Program (23-721).

  • Kahl, J. S., Stoddard, J. L., Haeuber, R., Paulsen, S. G., Birnbaum, R., Deviney, F. A., Webb, J. R., DeWalle, D. R., Sharpe, W., Driscoll, C. T., Herlihy, A. T., Kellogg, J. H., Murdoch, P. S., Roy, K., Webster, K. E. and Urquhart, N. S.: 2004, ‘Have U.S. surface waters responded to the 1990 Clean Air Act amendments?’, Environmental Science and Technology 38, 484A–490A.

    Article  PubMed  Google Scholar 

  • Kahl, J. S., Norton, S. A., Cronan, C. S., Fernandez, I. J., Haines, T. A. and Bacon, L. C.: 1991, ‘Chemical relationships of surface water chemistry and acidic deposition in Maine’, Chapter 7 in D. Charles, (ed.), Regional Case Studies: Acid Deposition and Aquatic Ecosystems. Springer-Verlag, New York, USA, pp. 203–236.

    Google Scholar 

  • Kahl, J. S., Haines, T. A., Norton, S. A. and Davis, R. B.: 1993, ‘Recent trends in the acid-base status of surface waters in Maine, USA’, Water, Air, and Soil Pollution 67, 281–300.

    Google Scholar 

  • Kahl, J. S. and Scott, M.: 1988, ‘The aquatic chemistry of Maine’s High elevation lakes: Results from the HELM project’, Lake and Reservoir Management 4, 33–40.

    Google Scholar 

  • Palmer, K. and Burtraw, D.: 1997, ‘Electricity restructuring and regional air pollution’, Resource and Energy Economics 19, 139–174.

    Article  Google Scholar 

  • Reuss, J. O., Cosby, B. J. and Wright, R. F.: 1987, ‘Chemical processes governing soil and water acidification’, Nature 329, 27–32.

    Article  Google Scholar 

  • Rubin, E. S., Small, M. J., Bloyd, C. N. and Henrion, M.: 1992, ‘Integrated assessment of acid-deposition effects on lake acidification’, Journal of Environmental Engineering 118, 120–134.

    Google Scholar 

  • Sinha, R., Small, M. J., Ryan, P. F., Sullivan, T. J. and Cosby, B. J.: 1998, ‘Reduced-form modelling of surface water and soil chemistry for the Tracking and Analysis Framework’, Water, Air, and Soil Pollution 105, 617–642.

    Google Scholar 

  • Small, M. J. and Sutton, M. C.: 1986, ‘A regional pH-alkalinity relationship’, Water Research 20, 335–343.

    Article  Google Scholar 

  • Small, M. J., Cosby, B. J., Marnicio, R. J. and Henrion, M.: 1995, ‘Joint application of an empirical and mechanistic model for regional lake acidification’, Environmental Monitoring and Assessment 35, 113–136.

    Article  Google Scholar 

  • Stoddard, J., Kahl, J. S., Deviney, F., DeWalle, D., Driscoll, C., Herlihy, A., Kellogg, J., Murdoch, P., Webb, J. and Webster, K.: 2003, ‘Response of Surface Water Chemistry to the Clean Air Act Amendments of 1990’, EPA/620/R-03/001, U.S. Environmental Protection Agency, Washington, DC. 78 p.

  • Stoddard, J. L., Driscoll, C. T., Kahl, S. and Kellog, J.: 1998, ‘Can site-specific trends be extrapolated to a region? An acidification example for the northeast’, Ecological Applications 8, 288–299.

    Google Scholar 

  • Stoddard, J. L., Jeffries, D. S., Lükewille, A., Clair, T. A., Dillon, P. J., Driscoll, C. T., Forsius, M., Johannessen, M., Kahl, J. S., Kellogg, J. H., Kemp, A., Mannio, J., Monteith, D. T., Murdoch, P. S., Patrick, S., Rebsdorf, A., Skjelkvåle, B. L., Stainton, M. P., Traaen, T., van Dam, H., Webster, K. E., Wieting, J. and Wilander, A.: 1999, ‘Regional Trends in Aquatic Acidification in North America and Europe’, Nature 401, 575–578.

    Article  Google Scholar 

  • Sullivan, T. J. and Cosby, B. J.: 1998, ‘Modeling the concentration of aluminum in surface waters’, Water, Air, and Soil Pollution 105, 643–659.

    Google Scholar 

  • Sullivan, T. J., Cosby, B. J., Herlihy, A. T., Webb, J. R., Bulger, A. J., Snyder, K. U., Brewer, P. F., Gilbert, E. H. and Moore, D. L.: 2004, ‘Regional model projections of future effects of sulfur and nitrogen deposition on streams in the southern Appalachian Mountains’, Water Resources Research 40, W02101, doi:10.1029/2003WR001998.

  • Wright, R. F. and Cosby, B. J.: 2003, ‘Future recovery of acidified lakes in southern Norway predicted by the MAGIC model’, Hydrology and Earth System Sciences 7, 467–483.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua J. Lawler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawler, J.J., Rubin, J., Cosby, B.J. et al. Predicting Recovery from Acidic Deposition: Applying a Modified TAF (Tracking and Analysis Framework) Model to Maine (USA) High Elevation Lakes. Water Air Soil Pollut 164, 383–399 (2005). https://doi.org/10.1007/s11270-005-4040-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-005-4040-1

Keywords

Navigation