Water, Air, and Soil Pollution

, Volume 164, Issue 1–4, pp 21–42 | Cite as

Mercury Transport in a High-Elevation Watershed in Rocky Mountain National Park, Colorado

  • M. Alisa Mast
  • Donald H. Campbell
  • David P. Krabbenhoft
  • Howard E. Taylor


Mercury (Hg) was measured in stream water and precipitation in the Loch Vale watershed in Rocky Mountain National Park, Colorado, during 2001–2002 to investigate processes controlling Hg transport in high-elevation ecosystems. Total Hg concentrations in precipitation ranged from 2.6 to 36.2 ng/L and showed a strong seasonal pattern with concentrations that were 3 to 4 times higher during summer months. Annual bulk deposition of Hg was 8.3 to 12.4 μ g/m2 and was similar to deposition rates in the Midwestern and Northeastern U.S. Total Hg concentrations in streams ranged from 0.8 to 13.5 ng/L and were highest in mid-May on the rising limb of the snowmelt hydrograph. Stream-water Hg was positively correlated with dissolved organic carbon suggesting organically complexed Hg was flushed into streams from near-surface soil horizons during the early stages of snowmelt. Methylmercury (MeHg) in stream water peaked at 0.048 ng/L just prior to peak snowmelt but was at or below detection (< 0.040 ng/L) for the remainder of the snowmelt season. Annual export of total Hg in Loch Vale streams ranged from 1.2 to 2.3 μ g/m2, which was less than 20% of wet deposition, indicating the terrestrial environment is a net sink of atmospheric Hg. Concentrations of MeHg in stream water and corresponding watershed fluxes were low, indicating low methylation rates or high demethylation rates or both.


alpine atmospheric deposition dissolved organic carbon mercury methylmercury snowmelt subalpine watershed budget 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan, C. J. and Heyes, A.: 1998, ‘A preliminary assessment of wet deposition and episodic transport of total and methylmercury from low order Blue Ridge watersheds, SE USA’, Water Air Soil Pollut. 105, 573–592.CrossRefGoogle Scholar
  2. Baron, J.: 1992, Biogeochemistry of a subalpine ecosystemLoch Vale Watershed, Ecological Studies Analysis and Synthesis 90, Springer Verlag, New York, 247 pp.Google Scholar
  3. Baron, J. and Denning, A. S.: 1993, ‘The influence of mountain meteorology on precipitation chemistry at low and high elevations of the Colorado Front Range, USA’, Atmos. Environ. 27, 2337–2349.Google Scholar
  4. Bishop, K., Lee, Y. H., Pettersson, C. and Allard, B.: 1995, ‘Methylmercury in runoff from the Svartberget Catchment in northern Sweden during a stormflow episode’, Water Air Soil Pollut. 80, 445–454.CrossRefGoogle Scholar
  5. Bowles, K. C., Apte, S. C., Maher, W. A. and Bluhdorn, D. R.: 2003, ‘Mercury cycling in Lake Gordon and Lake Pedder, Tasmania (Australia) – II Catchment Processes’, Water Air Soil Pollut. 147, 25–38.CrossRefGoogle Scholar
  6. Boyer, E. W., Hornberger, G. M., Bencala, K. E. and McKnight, D. M.: 1997, ‘Response characteristics of DOC flushing in an alpine catchment’, Hydrol. Process. 11, 1635–1647.CrossRefGoogle Scholar
  7. Branfireun, B. A., Heyes, A. and Roulet, N. T.: 1996, ‘The hydrology and methylmercury dynamics of a Precambrian Shield headwater peatland’, Water Resour. Res. 32, 1785–1794.CrossRefGoogle Scholar
  8. Campbell, D. H., Clow D. W., Ingersoll, G. P., Mast, M. A., Spahr, N. E. and Turk, J. T.: 1995, ‘Processes controlling the chemistry of two snowmelt-dominated streams in the Rocky Mountains’, Water Resour. Res. 31, 2811–2821.CrossRefGoogle Scholar
  9. DeWild, J. F., Olson, M. L. and Olund, S. D.: 2002, ‘Determination of methylmercury by aqueous phase ethylation, followed by gas chromatographic separation with cold vapor atomic fluorescence detection’, U.S. Geological Survey Open-File Report 01–445, 14 pp., available online at http://wi.water.usgs.gov/pubs/ofr-01-445/ofr-01-445.pdf
  10. Driscoll, C. T., Blette, V., Yan, C., Schofield, C. L., Munson, R. and Holsapple, J.: 1995, ‘The role of dissolved organic carbon in the chemistry and bioavailability of mercury in remote Adirondack lakes’, Water Air Soil Pollut. 80, 499–508.CrossRefGoogle Scholar
  11. Fishman, M. J. and Friedman, L. C.: 1989, ‘Methods for determination of inorganic substances in water and fluvial sediments’, U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A1, 545 pp.Google Scholar
  12. Glass, G. E. and Sorensen, J. A.: 1999, ‘Six-year trend (1990–1995) of wet mercury deposition in the upper Midwest, U.S.A.’, Environ. Sci. Technol. 33, 3303–3312.CrossRefGoogle Scholar
  13. Guentzel, J. L., Landing, W. M., Gill, G. A. and Pollman, C. D.: 2001, ‘Processes influencing rainfall deposition of mercury in Florida’, Environ. Sci. Technol. 35, 863–873.CrossRefPubMedGoogle Scholar
  14. Hintelmann, H., Harris, R., Heyes, A., Hurley, J. P., Kelly, C. A., Krabbenhoft, D. P., Lindberg, S., Rudd, J. W. M., Scott, K. J. and St. Louis, V.: 2002, ‘Reactivity and mobility of new and old mercury deposition in a Boreal forest ecosystem during the first year of the METAALICUS study’, Environ. Sci. Technol. 36, 5034–5040.CrossRefPubMedGoogle Scholar
  15. Hood, E., McKnight, D. M. and Williams, M.W.: 2003, ‘Sources and chemical character of dissolved organic carbon across an alpine/subalpine ecotone, Green Lakes Valley, Colorado Front Range, United States’, Water Resour. Res. 39(7), 1188, doi:10.1029/2002WR001738.CrossRefGoogle Scholar
  16. Hurley, J. P., Benoit, J. M., Babiarz, C. L., Shafer, M. M., Andren, A. W., Sullivan, J. R., Hammond, R. and Webb, D. A.: 1995, ‘Influences of watershed characteristics on mercury levels in Wisconsin rivers’, Environ. Sci. Technol. 29, 1867–1875.Google Scholar
  17. Hurley, J. P., Cowell, S. E., Shafer, M. M. and Hughes, P. E.: 1998, ‘Tributary loading of mercury to Lake Michigan – Importance of seasonal events and phase partitioning’, Sci. Total Environ. 213, 129–137.CrossRefGoogle Scholar
  18. Ingersoll, G. P., Turk, J. T., Mast, M. A., Clow, D. W., Campbell, D. H. and Bailey, Z. C.: 2002, ‘Rocky mountain snowpack chemistry network – History, methods, and the importance of monitoring mountain ecosystems’, U.S. Geological Survey Open-File Report 01–466, 14 pp.Google Scholar
  19. Iverfedlt, A.: 1991, ‘Mercury in forest canopy throughfall water and its relation to atmospheric deposition’, Water Air Soil Pollut. 65, 554–564.Google Scholar
  20. Kolka, R. K., Grigal, D. F., Verry, E. S. and Nater, E. A.: 1999a, ‘Mercury and organic carbon relationships in streams draining forested upland/peatland watersheds’, J. Environ. Qual. 28, 766–775.Google Scholar
  21. Kolka, R. K., Nater, E. A., Gringal, D. F. and Verry, E. S.: 1999b, ‘Atmospheric inputs of mercury and organic carbon into a forested upland/bog watershed’, Water Air Soil Pollut. 113, 273–294.CrossRefGoogle Scholar
  22. Krabbenhoft, D. P., Benoit, J. M., Babiarz, C. L., Hurley, J. P. and Andren, A. W.: 1995, ‘Mercury cycling in the Allequash Creek watershed, northern Wisconsin’, Water Air Soil Pollut. 80, 425–433.CrossRefGoogle Scholar
  23. Krabbenhoft, D. P., Olson, M. L., DeWild, J. F., Clow, D. W., Striegl, R. G., Dornblaser, M. M. and VanMetre, P.: 2002, ‘Mercury loading and methymercury production and cycling in high-altitude lakes from the Western United States’, Water Air Soil Pollut. Focus 2, 233–249.CrossRefGoogle Scholar
  24. Lalonde, J. D., Poulain, A. J. and Amyot, M.: 2002, ‘The role of mercury redox reactions in snow on snow-to-air mercury transfer’, Environ. Sci. Technol. 36, 174–178.CrossRefPubMedGoogle Scholar
  25. Landing, W. M., Guentzel, J. L., Gill, G. A. and Pollman, C. D.: 1998, ‘Methods for measuring mercury in rainfall and aerosols in Florida’, Atmos. Environ. 32, 909–918.CrossRefGoogle Scholar
  26. Lee, Y. H., Bishop, K., Pettersson, C., Iverfeldt, A. and Allard, B.: 1995, ‘Subcatchment output of mercury and methylmercury at Svartberget in northern Sweden’, Water Air Soil Pollut. 80, 455–465.CrossRefGoogle Scholar
  27. Lewis, M. E. and Brigham, M. E.: 2004, ‘Low-level Mercury’, in F. D. Wilde, D. B. Radtke, J. Gibs and R. T. Iwatsubo (eds.), Processing of Water Samples, U.S. Geological Survey Techniques of Water-Resources Investigations, Book 9, Chapter A5, available online at http://pubs.water.usgs.gov/twri9A5/.
  28. Lindberg, S. E., Meyers, T. P. and Munthe, J.: 1995, ‘Evasion of mercury vapour from the surface of a recently limed acid forest lake in Sweden’, Water Air Soil Pollut. 85, 725–730.CrossRefGoogle Scholar
  29. Lindberg, S. E., Turner, R. R., Meyers, T. P., Taylor, G. E. and Schroeder, W. H.: 1991, ‘Atmospheric concentrations and deposition of mercury to a deciduous forest at Walker Branch Watershed, Tennessee, USA’, Water Air Soil Pollut. 56, 557–594.CrossRefGoogle Scholar
  30. Lorey, P. and Driscoll, C. T.: 1998, ‘Historical trends of mercury deposition in Adirondack lakes’, Environ. Sci. Technol. 33, 718–722.CrossRefGoogle Scholar
  31. Lucotte, M., Mucci, A., Hillaire-Marcel, C., Pichet, P. and Grondin, A.: 1995, ‘Anthropogenic mercury enrichment in remote lakes of northern Quebec (Canada)’, Water Air Soil Pollut. 80, 467–476.CrossRefGoogle Scholar
  32. Manthorne, D. J.: 2002, ‘An inventory of atmospheric mercury enrichment to alpine lakes in Colorado’, Master’s Thesis, University of Colorado, Boulder, 76 pp.Google Scholar
  33. Mason, R. P., Lawson, N. M. and Sheu, G. R.: 2000, ‘Annual and seasonal trends in mercury deposition in Maryland’, Atmos. Environ. 34, 1691–1701.CrossRefGoogle Scholar
  34. National Park Service: 2002, ‘Western Airborne Contaminant Assessment Program’, National Park Service Fact Sheet, available online at http://www2.nature.nps.gov/air/Studies/air_toxics/WACAP.htm.
  35. Olson, M. L. and DeWild, J. F.: 1999, ‘Low-level collection techniques and species-specific analytical methods for mercury in water, sediment, and biota’, U.S. Geological Survey Water-Resources Investigations Report 99–4018, 11 pp.Google Scholar
  36. Roth, D. A.: 1994, ‘Ultra trace analysis of mercury and its distribution in some natural waters of the United States’, Ph.D. Thesis, Colorado State University, Fort Collins, 309 pp.Google Scholar
  37. Scherbatskoy, T., Shanley, J. B. and Keeler, G. J.: 1998, ‘Factors controlling mercury transport in an upland forested catchment’, Water Air Soil Pollut. 105, 427–438.CrossRefGoogle Scholar
  38. Schindler, D.: 1999, ‘From acid rain to toxic snow’, Ambio 28, 350–355.Google Scholar
  39. Schuster, P. F., Krabbenhoft, D. P., Naftz, D. L., Cecil, L. D., Olson, M. L., Dewild, J. F., Susong, D. D., Green, J. R. and Abbott, M. L.: 2002, ‘Atmospheric mercury deposition during the last 270 years – A glacial ice core record of natural and anthropogenic sources’, Environ. Sci. Technol. 36, 2303–2310.CrossRefPubMedGoogle Scholar
  40. Schwesig, D., Ilgen, G. and Matzner, E.: 1999, ‘Mercury and methylmercury in upland and wetland acid forest soils of a watershed in NE-Bavaria, Germany’, Water Air Soil Pollut. 113, 141–154.CrossRefGoogle Scholar
  41. Schwesig, D. and Matzner, E.: 2001, ‘Dynamics of mercury and methylmercury in forest floor and runoff of a forested watershed in Central Europe’, Biogeochemistry 53, 181–200.CrossRefGoogle Scholar
  42. Shanley J. B., Schuster, P. F., Reddy, M. M., Roth, D. A., Taylor, H. E. and Aiken, G. R.: 2002, ‘Mercury on the move during snowmelt in Vermont’, Eos, Transactions of the American Geophysical Union 83, 45–48.Google Scholar
  43. St. Louis, V. L., Rudd, J. W. M., Kelly, C. A., Beaty, K. G., Bloom, N. S. and Flett, R. J.: 1994, ‘Importance of wetlands as sources of methylmercury to boreal forest ecosystems’, Can. J. Fish. Aquat. Sci. 51, 1065–1076.Google Scholar
  44. Susong, D. D., Abbott, M. L. and Krabbenhoft, D. P.: 1999, ‘Reconnaissance of mercury concentrations in snow from the Teton and Wasatch Ranges to assess the atmospheric deposition of mercury from an urban area’, Eos, Transactions of the American Geophysical Union 80(46), Abstract H12b-06.Google Scholar
  45. Swain, E. B., Engstrom, D. R., Brigham, M. E., Henning, T. A. and Brezonik, P. L.: 1992, ‘Increasing rates of atmospheric mercury deposition in Midcontinental North America’, Science 257, 784–787.Google Scholar
  46. United States Environmental Protection Agency: 1997, Mercury Study Report to Congress, United States Environmental Protection Agency, EPA-452-97–003, Office of Air and Radiation, Washington, D.C., 1980 pp.Google Scholar
  47. Watras, C. J., Morrison, K. A., Host, J. S. and Bloom, N. S.: 1995a, ‘Concentration of mercury species in relationship to other site-specific factors in the surface waters of northern Wisconsin lakes’, Limnol. Oceanogr. 40, 556–565.Google Scholar
  48. Watras, C. J., Morrison, K. A. and Bloom, N. S.: 1995b, ‘Mercury in remote Rocky Mountain lakes of Glacier National Park, Montana, in comparison with other temperate North American regions’, Can. J. Fish. Aquat. Sci. 52, 1220–1228.Google Scholar
  49. Wiener, J. G., Krabbenhoft, D. P., Heinz, G. H. and Scheuhammer, A. M.: 2003, ‘Ecotoxicology of Mercury’, in D. J. Hoffman, B. A. Rattner, G. A. Burton, Jr. and J. Cairns, Jr. (eds.), Handbook of Ecotoxicology, 2nd edn, CRC Press, Boca Raton, Florida, pp. 407–461.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • M. Alisa Mast
    • 1
  • Donald H. Campbell
    • 1
  • David P. Krabbenhoft
    • 2
  • Howard E. Taylor
    • 3
  1. 1.Water Resources Division, MS 415, Denver Federal CenterU.S. Geological SurveyDenver
  2. 2.Water Resources DivisionU.S. Geological SurveyMiddleton
  3. 3.Water Resources DivisionU.S. Geological SurveyBoulder

Personalised recommendations