Skip to main content
Log in

Territorial Decision Support System Based on IDF Curves’ Parameters Regionalization

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

The Frequency – Duration – Intensity (IDF) curves are essential in designing channel and rainwater drainage systems, and their unavailability is a real issue for the designers of such structures. This paper aims to perform a large-scale regionalization analysis of the IDF curves’ parameters on the Moroccan rainfall network. The parameters for this study were derived from rainfall distribution greater than 24 h and analyzed using the ordinary co-kriging interpolator. The outcome provided spatial distribution maps that estimate IDF curves’ parameters for any location within the study area. The latter are obtained using the Montana law equation i (T) = a (T)*t(b(T)), with the variables: the return period T, the rainfall duration t, and the precipitation intensity i. The IDF curves’ parameters analysis revealed that average precipitation parameter estimates “a” range from 260 to 821 mm/h for return periods of 2 to 100 years, while the parameter estimates “b” fall between 0.49 and 0.89. The cross-validation approach was performed to ensure reliability and accuracy. The results showed that R2 values are very close to 1 (0.9925 for a (T = 2yrs), 0.9998 for a (T = 5yrs), 0.9979 for a (T = 10yrs), 0.9958 for a (T = 20yrs), 0.9934 for a (T = 50yrs), 0.9920 for a (T = 100yrs), 0.9934 for b) which confirm the precision of the outputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of Data and Materials

Due to privacy and ethical concerns, neither the data nor the source of the data can be made available.

References

  • Acosta-Castellanos PM, Castro Ortegón YA, Perico Granados NR (2023) Regionalization of IDF curves by interpolating the intensity and adjustment parameters: Application to Boyacá, Colombia, South America. Water (Switzerland) 15(3). https://doi.org/10.3390/w15030561

  • Adhikary SK, Muttil N, Yilmaz AG (2017) Cokriging for enhanced spatial interpolation of rainfall in two Australian catchments. Hydrol Process 31(12):2143–2161. https://doi.org/10.1002/hyp.11163

    Article  ADS  Google Scholar 

  • Baillargeon S (2005) Le krigeage : revue de la théorie et application à l’interpolation spatiale de données des précipitations. Université Laval, Faculté des Sciences et de Génie

    Google Scholar 

  • Bora S, Winfried W, Henrike S, Luisa-Bianca T, Uwe H (2023) Regionalization of rainfall depth–duration–frequency curves with different data types in Germany. Hydrol Earth Syst Sci 27(5):1109–1132

    Article  Google Scholar 

  • Bushra A, András B (2021) Interpolation of Regionalized Intensity Duration Frequency (IDF) Estimates based on the observed precipitation data of Baden Wurttemberg (BW). EGU General Assembly, Germany, p 2021

    Google Scholar 

  • Chahouki MAZ, Chahouki AZ, Malekian A, Bagheri R, Vesali SA (2014) Evaluation of different cokriging methods for rainfall estimation in arid regions (Central Kavir Basin in Iran). Desert 19(1):1–9

    Google Scholar 

  • Chitrakar P, Sana A, Almalki Hamood Nasser, S. (2023) Regional distribution of intensity–duration–frequency (IDF) relationships in Sultanate of Oman. J King Saud Univ Sci 35(7). https://doi.org/10.1016/j.jksus.2023.102804

  • Cook LM, McGinnis S, Samaras C (2020) The effect of modeling choices on updating intensity-duration-frequency curves and stormwater infrastructure designs for climate change. Clim Change 159(2):289–308. https://doi.org/10.1007/s10584-019-02649-6

    Article  ADS  Google Scholar 

  • Hasnaoui MD (2005) Approche intégrée basée sur les nouvelles technologies de l’information et la modélisation mathématique en hydrologie pour la rationalisation de la planification et de la gestion des bassins versants. Universite Mohammed V - Agdal

  • Hingray B, Picouet C, Musy A (2014) Hydrologie 2, une science pour l’ingénieur. Presses Polytechniques et Universitaires Romandes. ISBN: 978-2-88074-798-5. http://infoscience.epfl.ch/record/201945

  • Hwang SH, Kim KB, Han D (2020) Comparison of methods to estimate areal means of short duration rainfalls in small catchments, using rain gauge and radar data. J Hydrol 588(January):125084. https://doi.org/10.1016/j.jhydrol.2020.125084

    Article  Google Scholar 

  • Kebaili Bargaoui Z, Chebbi A (2009) Comparison of two kriging interpolation methods applied to spatiotemporal rainfall. J Hydrol 365(1–2):56–73. https://doi.org/10.1016/j.jhydrol.2008.11.025

    Article  Google Scholar 

  • Khelfi MEA, Touaibia B, Guastaldi E (2017) Regionalization of the “intensity-duration-frequency” curves in Northern Algeria. Arab J Geosci 10(20):1–13. https://doi.org/10.1007/s12517-017-3214-7

    Article  Google Scholar 

  • Koussa M (2018) Étude comparative entre les méthodes d’interpolation pour la cartographie des Nitrates : Cas d’application les eaux souterraines de Djelfa, Algérie. Agric For J 2(1):18–25

    Google Scholar 

  • Lang M, Arnaud P (2017) La détermination des valeurs extrêmes de pluie et de crue en France. Sci Eaux Terr 23(2):42. https://doi.org/10.3917/set.023.0042

    Article  Google Scholar 

  • Lebécherel L (2011) Sensibilité des performances et des paramètres d’un modèle Pluie-Débit distribué à sa résolution spatiale et son pas de temps de fonctionnement. Université Pierre et Marie Curie, Ecole des Mines de Paris & Ecole Nationale du Génie Rural des Eaux et des Forêts

  • Mahmoudi MR, Eslamian S, Soltani S, Tahanian M (2023) Regionalization of rainfall intensity–duration–frequency (IDF) curves with L-moments method using neural gas networks. Theoret Appl Climatol 151(1–2):1–11. https://doi.org/10.1007/s00704-022-04143-z

    Article  ADS  Google Scholar 

  • Maria PK, Emil BR, Verpe DA, Julia L (2023) A principal-component-based strategy for regionalization of precipitation intensity–duration–frequency (IDF) statistics. Hydrol Earth Syst Sci 27(20):3719–3732

    Article  Google Scholar 

  • Meylan P, Musy A (1999) Hydrologie frequentielle. Editions *H*G*A*, Bucarest

  • Onyutha C, Willems P (2015) Empirical statistical characterization and regionalization of amplitude - duration - frequency curves for extreme peak flows in the Lake Victoria Basin, East Africa. Hydrol Sci J 60(6):997–1012. https://doi.org/10.1080/02626667.2014.898846

    Article  Google Scholar 

  • Ouarda TBMJ, Lachance M, Bobée B, Barbet M (2003) La régionalisation des précipitations : une revue bibliographique des développements récents. Rev Sci Eau 16(1):27–54

    Google Scholar 

  • Rao GV, Reddy KV, Srinivasan R, Sridhar V (2020) Spatio-temporal analysis of rainfall extremes in the flood-prone Nagavali and Vamsadhara Basins in eastern India. Weather Clim Extremes 100265. https://doi.org/10.1016/j.wace.2020.100265

  • Razavi T, Coulibaly P (2016) An evaluation of regionalization and watershed classification schemes for continuous daily streamflow prediction in ungauged watersheds. Can Water Resour J 42(1):2–20. https://doi.org/10.1080/07011784.2016.1184590

    Article  Google Scholar 

  • Roche M (1963) Statistique et Calcul des probabilités en Hydrologie. Hydrol Surf 17–53. Gauthier-Villars ORSTOM

  • Sangüesa C, Pizarro R, Ingram B, Ibáñez A, Rivera D, García-Chevesich P, Pino J, Pérez F, Balocchi F, Peña F (2023) Comparing methods for the regionalization of intensity−duration−frequency (IDF) curve parameters in sparsely-gauged and ungauged areas of central Chile. Hydrology 10(9). https://doi.org/10.3390/hydrology10090179

  • Schardong A, Simonovic SP, Gaur A, Sandink D (2020) Web-based tool for the development of intensity duration frequency curves under changing climate at gauged and ungauged locations. Water (Switzerland) 12(5). https://doi.org/10.3390/W12051243

  • Shehu B, Willems W, Thiele L, Stockel H, Haberlandt U (2021) Regionalization of intensity-duration-frequency curves for different data types in Germany. EGU Gen Assem 2021

  • Silva DF, Simonovic SP, Schardong A, Goldenfum JA (2021) Assessment of non-stationary IDF curves under a changing climate: Case study of different climatic zones in Canada. J Hydrol: Reg Stud 36. https://doi.org/10.1016/j.ejrh.2021.100870

  • Vessia G, Di Curzio D, Chiaudani A, Rusi S (2020) Regional rainfall threshold maps drawn through multivariate geostatistical techniques for shallow landslide hazard zonation. Sci Total Environ 705:135815. https://doi.org/10.1016/j.scitotenv.2019.135815

    Article  ADS  PubMed  Google Scholar 

  • World Bank (2015) Adaptation des routes au changement climatique au maroc. Report

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Oumaima RAMI, Moulay Driss HASNAOUI, and Driss OUAZAR. The first draft of the manuscript was written by Oumaima RAMI and Moulay Driss HASNAOUI and Driss OUAZAR reviewed and commented on previous versions of the manuscript. All authors read and approved the final manuscript. The revision was done by Oumaima RAMI.

Corresponding author

Correspondence to Oumaima Rami.

Ethics declarations

Ethical Approval

The paper is the authors’ own original work which has not been previously published elsewhere, it is not currently being considered for publication elsewhere. The paper reflects the author’s own research and analysis truthfully and completely. The paper properly credits the meaningful contributions of co-authors. The results are appropriately placed in the context of prior and existing research. All sources used are properly disclosed. All authors have been personally and actively involved in substantial work leading to the paper and will take public responsibility for its content.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasnaoui, M.D., Rami, O. & Ouazar, D. Territorial Decision Support System Based on IDF Curves’ Parameters Regionalization. Water Resour Manage 38, 1181–1204 (2024). https://doi.org/10.1007/s11269-023-03715-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-023-03715-6

Keywords

Navigation