Skip to main content
Log in

Time of Concentration Model for Non-Urban Tropical Basins Based on Physiographic Characteristics and Observed Rainfall Responses

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

The time of concentration (Tc), which represents the steady-state hydraulic conditions of a watershed, is an essential parameter for understanding precipitation and runoff dynamics in a hydrographic basin. Precise Tc estimates are required in many hydrological models and for the correct scaling of hydraulic structures. In Brazil, common empirical or semi-empirical methods for estimating Tc have not been developed and verified using local data, studies are needed in the area of hydrological modeling, which provide knowledge of the flow dynamics in tropical regions. In this study, we develop a model for estimating Tc for non-urban tropical basins, which are characterized by soils with high to very high runoff potential. The model employs the following input variables: basin area, main thalweg length, and average rainfall intensity, and an unprecedented methodology that applies: the Harmony Search algorithm to optimize parameters, data from 15 basins with areas less than 2,000 km2, 1,002 hydrological events, 46 equations for estimating Tc, and six different statistical techniques. The model is effective for estimating Tc in non-urban basins in a tropical climate region that mostly present soils with a high to very high runoff potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  • Adji TN (2012) Wet season hydrochemistry of Bribin Cave in Gunung Sewu Karst, Indonesia. Environ Earth Sci 67(6):1563–1572. https://link.springer.com/article/10.1007/s12665-012-1599-x

  • Agência Nacional De Águas (ANA) (2021). Hidroweb. Available in: http://www.snirh.gov.br/hidroweb/

  • Ahn SJ, Lee EH (1986) Derivation of the synthetic unit hydrograph at ungaged small watershed. Journal of Korea Water Resources Association 19(2):157–166

    Google Scholar 

  • Almeida AK, de Almeida IK, Guarienti JA, Gabas SG (2022) The time of concentration application in studies around the world: a review. Environ Sci Pollut Res 29:8126–8172. https://doi.org/10.1007/s11356-021-16790-2

    Article  Google Scholar 

  • Almeida IK, Almeida AK, Anache JAA, Steffen JL, Sobrinho TA (2014) Estimation on time of concentration of overland flow in watersheds: a review. Geosciences= Geociências 33(4):661–671

  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JDM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22(6):711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • Alves JDP, Castro PDTA (2003) Influência de feições geológicas na morfologia da bacia do rio Tanque (MG) baseada no estudo de parâmetros morfométricos e análise de padrões de lineamentos. Revista Brasileira De Geociências 33(2):117–127

    Article  Google Scholar 

  • Antoneli V, Thomaz EL (2007) Caracterização do meio físico da bacia do arroio Boa Vista-Guaramiranga (PR). Caminhos de Geografia 8(21). https://doi.org/10.14393/RCG82115570

  • Brisa (1974) Normas Gerais de Projecto para Auto-Estradas Portuguesas, Tomo V, Norma 7-Drenagem, Auto-Estradas de Portugal

  • California Division of Highways (CDH) (1960) California culvert practice: reprint of a series of technical abstracts from California highways and public works. 2nd printing. State of California, Department of Public Works, Division of Highways. Sacramento, USA. p 119

  • Cardoso CA, Dias HCT, Soares CPB, Martins SV (2006) Caracterização morfométrica da bacia hidrográfica do rio Debossan, Nova Friburgo, RJ. Revista Árvore 30:241–248. https://doi.org/10.1590/S0100-67622006000200011

    Article  Google Scholar 

  • Carter RW (1961) Magnitude and frequency of floods in suburban areas. US Geol Surv Prof Pap 424:9–11

    Google Scholar 

  • Chang H, Jung IW (2010) Spatial and temporal changes in runoff caused by climate change in a complex large river basin in Oregon. J Hydrol 388(3–4):186–207. https://doi.org/10.1016/j.jhydrol.2010.04.040

    Article  Google Scholar 

  • Chow VT et al (1962) Hydrologic determination of waterway areas for the design of drainage structures in small drainage basins. University of Illinois at Urbana Champaign, College of Engineering, Engineering Experiment Station

    Google Scholar 

  • Chow VT, Maidment DR, Mays LW (1988) Applied hydrology. McGraw-Hill, New York

    Google Scholar 

  • Clark CO (1945) Storage and the unit hydrograph. Trans Am Soc Civ Eng 110(1):1419–1446

    Article  Google Scholar 

  • De Almeida IK, Almeida AK, Steffen JL, Alves Sobrinho T (2016a) Model for estimating the time of concentration in watersheds. Water Resour Manag 30(12):4083–4096. https://link.springer.com/article/10.1007/s11269-016-1383-x

  • De Almeida IK, Steffen JL, Almeida AK, Bacchi CGV, Sobrinho TA (2016b) Otimização de Parâmetros de Modelo Hidrológico Usando Pesquisa Harmônica. Geosciences= Geociências 35(1):149–156

  • Dooge J (1973) Linear theory of hydrologic systems. Agricultural Research Service, US Department of Agriculture

  • Embrapa - Empresa Brasileira de Pesquisa Agropecuária (1979) Serviço Nacional de Levantamento e Conservação de Solos (Rio de Janeiro, RJ). Súmula da 10. reunião Técnica de Levantamento de Solos. Rio de Janeiro, 83p. (EMBRAPA-SNLCS. Micelânea, 1)

  • Espey Jr WH, Morgan CW, Masch FD (1966) Study of some effects of urbanization on storm runoff from a small watershed. Texas Water Development Board

  • Fattorelli S, Marchi L (1988) Metodi deterministici per la valutazione dei deflussi di piena. Rome: Gruppo nazionale per la difesa dalle catastrofi idrogeologiche, Linea 1

  • Ferro V (2006) Riqualificazione ambientale dei corsi d’acqua. Quaderni di Idronomia Montana. Nuova Editoriale Bios, Giardini Naxos, Italy

    Google Scholar 

  • Flavell DJ (1983) The rational method applied to small rural catchments in the south west of Western Australia. J Civ Eng Trans 25(2):121–127

    Google Scholar 

  • Fraley C, Raftery AE (1998) How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput J 41(8):578–588. https://doi.org/10.1093/comjnl/41.8.578

    Article  Google Scholar 

  • Ganora D, Claps P, Laio F, Viglione A (2009) An approach to estimate nonparametric flow duration curves in ungauged basins. Water Resour Res 45(10). https://doi.org/10.1029/2008WR007472

  • Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. simulation 76(2):60–68. https://doi.org/10.1177/003754970107600201

  • Gorgij AD, Kisi O, Moayeri MM, Moghaddam AA (2018) Hydraulic conductivity estimation via the AI-based numerical model optimization using the harmony search algorithm. Hydrol Res 49(5):1669–1683. https://doi.org/10.2166/nh.2018.147

    Article  Google Scholar 

  • Gottschalk L, Motovilov Y (2000) Macro-scale hydrological modeling – a Scandinavian experience. International Symposium on: ‘Can science and society save the water crisis in the 21st century – Report from the world’ Japan Society of Hydrology and Water Resources. Tokyo. p 38–45

  • Grimaldi S, Petroselli A, Tauro F, Porfiri M (2012) Time of concentration: a paradox in modern hydrology. Hydrol Sci J 57(2):217–228. https://doi.org/10.1080/02626667.2011.644244

    Article  Google Scholar 

  • Guarienti JA, Almeida AK, Neto AM, de Oliveira Ferreira AR, Ottonelli JP, de Almeida IK (2020) Performance analysis of numerical methods for determining Weibull distribution parameters applied to wind speed in Mato Grosso do Sul, Brazil. Sustain Energy Technol Assess 42:100854. https://doi.org/10.1016/j.seta.2020.100854

    Article  Google Scholar 

  • Haktanir T, Sezen N (1990) Suitability of two-parameter gamma and three-parameter beta distributions as synthetic unit hydrographs in Anatolia. Hydrol Sci J 35(2):167–184. https://doi.org/10.1080/02626669009492416

    Article  Google Scholar 

  • Hamlet AF, Lettenmaier DP (2007) Effects of 20th century warming and climate variability on flood risk in the western US. Water Resour Res 43(6). https://doi.org/10.1029/2006WR005099

  • Heck HAD, Guarienti JA, Marques LS, Leite IR, Almeida AK, Lopes PVF, Menegati Neto A, Ferreira ARO, Almeida IK (2019) Mudanças no regime de chuvas causadas pelo crescimento urbano em clima Cfb – com verão temperado no estado de são Paulo. Em Anais da 71ª Reunião Anual da SBPC (21 a 27 de julho de 2019 – UFMS). Campo Grande, MS

  • Horton RE (1933) The role of infiltration in the hydrologic cycle. EOS Trans Am Geophys Union 14(1):446–460. https://doi.org/10.1029/TR014i001p00446

    Article  Google Scholar 

  • IBGE - Instituto Brasileiro de Geografia e Estatística (2021) https://downloads.ibge.gov.br/downloads_geociencias.htm

  • Indelicato S (1988) Verifica di modelli di valutazione del rischio idraulico-geologico ed efficacia degli interventi. Rome: Gruppo nazionale per la difesa dalle catastrofi idrogeologiche, Linea 3

  • Instituto Nacional De Meteorologia (INMET) (2021) Available in: https://portal.inmet.gov.br/dadoshistoricos

  • Japan Society of Civil Eengineers (JSCE) (1999) The collection of hydraulic formulae. Japan Society of Civil Engineers, Tokyo, Japan

    Google Scholar 

  • Johnstone D, Cross WP (1949) Elements of applied hydrology. Ronald Press, New York

    Google Scholar 

  • Jung S (2005) Development of Empirical Formulas for the Parameter Estimation of Clark’s Watershed Flood Routing Model. PhD dissertation, Korea University, Seoul, Korea

  • Kaufmann de Almeida IK, Almeida AK, Garcia Gabas S, Alves Sobrinho T (2017) Performance of methods for estimating the time of concentration in a watershed of a tropical region. Hydrol Sci J 62(14):2406–2414. https://doi.org/10.1080/02626667.2017.1384549

    Article  Google Scholar 

  • Keshtegar B, Ozbakkaloglu T, Gholampour A (2017) Modeling the behavior of FRP-confined concrete using dynamic harmony search algorithm. Eng Comput 33(3):415–430. https://link.springer.com/article/10.1007/s00366-016-0481-y

  • Kim Y (2015) Development of Concentration Time and Storage Coefficient Formula in Urban Stream Watersheds. MS thesis, Sejong University, Seoul, Korea

  • Kirpich ZP (1940) Time of concentration of small agricultural watersheds. Civ Eng 10(6):362

    Google Scholar 

  • Köppen W, Geiger R (1954) Klima der Erde. Justus Perthes, Darmstadt, Germany

  • Linsley RK, Kohler MA, Paulhus JL, Serra MF, Aparicio FD (1977) Hidrología para ingenieros. McGraw-Hill. p 386

  • Lombardi Neto, Francisco et al (1989) Nova abordagem para cálculo de espaçamento entre terraços. Simpósio Sobre Terraceamento Agrícola, p 99–124

  • Loukas A, Vasiliades L, Dalezios NR (2002) Potential climate change impacts on flood producing mechanisms in southern British Columbia, Canada using the CGCMA1 simulation results. J Hydrol 259(1–4):163–188. https://doi.org/10.1016/S0022-1694(01)00580-7

    Article  Google Scholar 

  • Luvizotto GL (2003) Caracterização metamórfica das rochas do grupo Araxá na região de São Sebastião do Paraíso, Sudoeste de Minas Gerais xvi–185 f. Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Geociências e Ciências Exatas

  • McCuen RH, Wong SL, Rawls WJ (1984) Estimating urban time of concentration. J Hydraul Eng 110(7):887–904. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:7(887)

    Article  Google Scholar 

  • Mesa LM (2006) Morphometric analysis of a subtropical Andean basin (Tucuman, Argentina). Environmental Geology 50(8):1235–1242. https://link.springer.com/article/10.1007/s00254-006-0297-y

  • Michailidi, Eleni Maria et al (2017) Adaptation of the concept of varying time of concentration within flood modelling: Theoretical and empirical investigations across the Mediterranean. In: EGU General Assembly Conference Abstracts, p. 10663

  • Ministry of Construction Transportation (MOCT) (1974) Research Report on Induction of Synthetic Unit Hydrograph for Flood Estimation. Ministry of Construction Transportation, Seoul, Korea

  • Mioto CL, Ribeiro VDO, Souza DMDQ, Pereira TV, Anache JAA, Paranhos Filho AC (2014) Morfometria de bacias hidrográficas através de SIGs livres e gratuitos. Anuário do Instituto de Geociências–UFRJ 37(2):16–22. https://doi.org/10.11137/2014_2_16_22

  • MMA/ICMBio (2018) Plano de manejo da Floresta Nacional de Capão Bonito. Disponível em: http://www.icmbio.gov.br/portal/unidadesdeconservacao/biomas-brasileiros/cerrado/unidades-de-conservacao-cerrado/2074-flona-de-capao-bonito

  • Moore DS (2007) The Basic Practice of Statistics. Freeman, New York

    Google Scholar 

  • Mousavi SJ, Nakhaei P, Sadollah A, Kim JH (2017) Optimization of hydropower storage projects using harmony search algorithm. In International Conference on Harmony Search Algorithm. Springer, Singapore, pp. 261–270. https://link.springer.com/chapter/10.1007/978-981-10-3728-3_26

  • Naghettini M, Pinto EJA (2007) Hidrologia Estatística. Belo Horizonte, Serviço Geológico do Brasil – CPRM, p 561

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—A discussion of principles. J Hydrol 10(3):282–290. https://doi.org/10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Oliveira ACC, Almeida AK, Guarienti JA, Lima CAS, de Almeida LVF, de Souza RS, de Almeida IK (2021) Extreme precipitation events and associated risk of failure in hydraulic projects in the state of Mato Grosso do Sul, Brazil. Mix Sustent 7(2):147–160. https://doi.org/10.29183/2447-3073.MIX2021.v7.n2.147-160

  • Pasini P (1910) Coefficienti udometrici desunti dal lavoro delle macchine nelle bonifiche meccaniche. Giornale Del Genio Civile 48(2):385–413

    Google Scholar 

  • Pérez O (1985) Determinación del tiempo de concentración para estimar la avenida de diseño. Ingeniería civil (La Habana). Cuba 36:40–53

    Google Scholar 

  • Pilgrim DH, McDermott GE (1981) Design floods for small rural catchments in eastern New South Wales. In First National Local Government Engineering Conference 1981: Reprints of Papers: Reprints of Papers. Canberra: Institution of Engineers, Australia, pp. 138–142

  • Pinto NLS, Holtz ACT, Martins JA, Gomide FLS (1976) Hidrologia básica. Editora Blucher, São Paulo, SP, Brasil, 304p

  • Puglisi S, Zanframundo P (1978) Osservazioni idrologiche in piccolo bacini del subappenino Dauno. Giornale Del Genio Civile 10–12:439–453

    Google Scholar 

  • Ramser CE (1927) Run-off from small agricultural areas. J Agric Res 34:797–823

    Google Scholar 

  • Rivard C, Lefebvre R, Paradis D (2014) Regional recharge estimation using multiple methods: an application in the Annapolis Valley, Nova Scotia (Canada). Environ Earth Sci 71(3):1389–1408. https://link.springer.com/article/10.1007/s12665-013-2545-2

  • Rziha F (1876) Eisenbahn-Unter-Und Oberbau (Vol. 1). Verlag der KK Hof-und Staatsdr., Vienna, Austria

  • Santos LJC, Oka-Fiori C, Canali NE, Fiori AP, da Silveira CT, da Silva JMF, Ross JLS (2006) Mapeamento geomorfológico do Estado do Paraná. Revista Brasileira de geomorfologia 7(2). https://doi.org/10.20502/rbg.v7i2.74

  • Sartori A, Lombardi Neto F, Genovez AM (2005) Classificação hidrológica de solos brasileiros para a estimativa da chuva excedente com o método do Serviço de Conservação do Solo dos Estados Unidos Parte 1: Classificação. Revista Brasileira De Recursos Hídricos 10(4):05–18

    Article  Google Scholar 

  • Schumm SA (1963) Sinuosity of alluvial rivers on the Great Plains. Geol Soc Am Bull 74(9):1089–1100. https://doi.org/10.1130/0016-7606(1963)74[1089:SOAROT]2.0.CO;2

    Article  Google Scholar 

  • Semenov M, Zimnik EA (2015) A three-component hydrograph separation based on relationship between organic and inorganic component concentrations: a case study in Eastern Siberia, Russia. Environ Earth Sci 73(2):611–620. https://link.springer.com/article/10.1007/s12665-014-3533-x

  • Sharifi S, Razaz M (2014) A New Methodology For Deriving Regional Time Of Concentration Equations Using GIS And Genetic Programming

  • Sheridan JM (1994) Hydrograph time parameters for flatland watersheds. Transactions of the ASAE 37(1):103–113. https://doi.org/10.13031/2013.28059

  • Silveira ALLD (2005) Desempenho de fórmulas de tempo de concentração em bacias urbanas e rurais. Rbrh: revista brasileira de recursos hídricos. Porto Alegre, RS: ABRH. Vol. 10, n. 1 (jan./mar. 2005), p. 5–23

  • Sreedevi PD, Owais SHHK, Khan HH, Ahmed S (2009) Morphometric analysis of a watershed of South India using SRTM data and GIS. Journal of the geological society of India 73(4):543–552. https://link.springer.com/article/10.1007/s12594-009-0038-4

  • SRTM (Shuttle Radar Topography Mission) NASA (2021) Available in: https://earthexplorer.usgs.gov/

  • Steffen JL, de Almeida IK, Costa Neto JF, Sobrinho TA (2014) Simulação do escoamento superficial em bacia hidrográfica. Geosciences= Geociências 33(1):147–156

  • Stewart M, Cimino J, Ross M (2007) Calibration of base flow separation methods with streamflow conductivity. Groundwater 45(1):17–27. https://doi.org/10.1111/j.1745-6584.2006.00263.x

    Article  Google Scholar 

  • Temez JR (1978) Calculo hidrometeorologico de caudales maximos em pequeñas cuencas naturales. Madrid: Ministério de Obras Publicas y Urbanismo (MOPU). Direccion General de Carreteras 12:1978

  • Tonello KC, Dias HCT, Souza ALD, Ribeiro CAAS, Leite FP (2006) Morfometria da bacia hidrográfica da Cachoeira das Pombas, Guanhães-MG. Revista Árvore 30:849–857. https://doi.org/10.1590/S0100-67622006000500019

    Article  Google Scholar 

  • United States Bureau of Reclamation (USBR) (1973) Design of small dams, 2nd edn. Water Resources Technical Publications, Washington, DC

    Google Scholar 

  • Valencia CY, Zuluaga O (1981) Estudio preliminar del tiempo de concentración en algunas cuencas de Antioquia. Universidad Nacional de Colombia, sede Medellín, Trabajo de grado

    Google Scholar 

  • Ventura G (1905) Bonificazione dela bassa pianura bolognese: Studio sui coefficienti udometrici. Giornale Del Genio Civile 43(3):3–36

    Google Scholar 

  • Villela SM, Mattos A (1975) Hidrologia aplicada. Mc Graw-Hill, São Paulo, p 181

  • Ward JH Jr (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236–244. https://doi.org/10.1080/01621459.1963.10500845

    Article  Google Scholar 

  • Watt WE, Chow KA (1985) A general expression for basin lag time. Can J Civ Eng 12(2):294–300. https://doi.org/10.1139/l85-031

    Article  Google Scholar 

  • Williams GB (1922) Flood discharges and the dimensions of spillways in India. Engineering (London) 134(9):321–322

  • Wisnovszky I (1958) Az összegyülekezési idő számítása (Calculation of accumulation time). Hidrológiai Közlöny 38(3):195–200

    Google Scholar 

  • Woodward DE (2010) Part 630 Hydrology National Engineering Handbook-Chapter 15 Time of Concentration

  • Yoon TH, Kim ST, Park JW (2005) On redefining of parameters of Clark model. KSCE J Civ Environ Eng Res 25(3B):181–187

    Google Scholar 

  • Yulianur A, Sugianto S, Puspita FM (2019) A simple method to develop a formula for estimating concentration time of drainage design. Aceh Int J Sci Technol 8(3):137–142. https://doi.org/10.13170/aijst.8.3.14819

  • Zhang R, Li Q, Chow TL, Li S, Danielescu S (2013) Baseflow separation in a small watershed in New Brunswick, Canada, using a recursive digital filter calibrated with the conductivity mass balance method. Hydrol Process 27(18):2659–2665. https://doi.org/10.1002/hyp.9417

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. The authors are grateful to the Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq, to the Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul, and to the Federal University of Mato Grosso do Sul—UFMS for their support in the development of this work.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Aleska Kaufmann Almeida – Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Writing the Original Draft and Review and Editing, Visualization; Isabel Kaufmann de Almeida – Conceptualization, Methodology, Validation, Formal analysis, Writing the Original Draft and Review and Editing, Visualization, Supervision; Funding. José Antonio Guarienti –Software, Formal analysis, Investigation, Writing the original Draft and Review and Editing; Luiz Felipe Fink –Software, Formal analysis, Investigation, Writing the Original Draft. Sandra Garcia Gabas –Writing the Original Draft.

Corresponding author

Correspondence to Aleska Kaufmann Almeida.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Competing Interest

The authors declare no competing or conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, A.K., de Almeida, I.K., Guarienti, J.A. et al. Time of Concentration Model for Non-Urban Tropical Basins Based on Physiographic Characteristics and Observed Rainfall Responses. Water Resour Manage 37, 5493–5534 (2023). https://doi.org/10.1007/s11269-023-03616-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-023-03616-8

Keywords

Navigation