Skip to main content
Log in

Nonparametric Approach to Copula Estimation in Compounding The Joint Impact of Storm Surge and Rainfall Events in Coastal Flood Analysis

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

The joint probability modelling of storm surges and rainfall events is the main task in assessing compound flood risk in low-lying coastal areas. These extreme or non-extreme events may not be dangerous if considered individually but can intensify flooding impact if they occur simultaneously or successively. Recently, the copula approach has been widely accepted in compound flooding but is often limited to parametric or semiparametric distribution settings in a limited number of cases. However, both parametric and semiparametric approaches assume the prior distribution type for univariate marginals and copula joint density. In that case, there is a high risk of misspecification if the underlying assumption is violated. In addition, both approaches suffer from a lack of flexibility. This study uses bivariate copula density in the nonparametric distribution setting. The joint copula structure is approximated nonparametrically by employing the Bernstein copula estimator and Beta kernel copula density, and their performances are also compared. The proposed model is tested with 46 years of rainfall and storm surge observations collected on Canada's west coast. The marginal distribution of the selected flood variables is modelled using nonparametric kernel density estimation (KDE). Based on the different model compatibility tests, the Bernstein copula with normal KDE margins defined the joint dependence structure well. The selected nonparametric copula model is further employed to estimate joint and conditional return periods. It is found that flood hazard characteristics occurrence simultaneously is less frequent in AND-joint cases than in OR-joint cases. Also, the derived model is further used to estimate failure probability (FP) statistics to assess the variation of bivariate hydrologic risk during the project lifetime. It is found that FP statistics could be underestimated when neglecting the compound effect of storm surge and rainfall in the coastal flood risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

Data used in the presented research are available at https://tides.gc.ca/eng/data (CWL data); https://wateroffice.ec.gc.ca/search/historical_e.html (Daily streamflow discharge records); https://climate.weather.gc.ca/ (Daily rainfall data).

Abbreviations

KDE:

Kernel Density Estimation

FP:

Failure Probability

CF:

Compound Flooding

JRP(s):

Joint Return Period(s)

PDF(s):

Probability Density Function(s)

CDF(s):

Cumulative Distribution Function(s)

EV:

Extreme value

GEV:

Generalized Extreme Value

SLR:

Sea Level Rise

MSE:

Mean Square Error

RMSE:

Root Mean Square Error

MAE:

Maximum Absolute Error

AIC:

Akaike Information Criterion

BIC:

Bayesian Information Criterion

HQC:

Hannan-Quinn Information Criterion

NSE:

Nash-Sutcliffe Model Efficiency

CWL:

Coastal Water Level

MLE:

Maximum Likelihood Estimation

DPI:

Direct Plug-in

AMISE:

Asymptotic Mean Integrated Squared Error

MK:

Mann-Kendall

CHS:

Canadian Hydrographic Service

References

  • Adamowski K (1989) A Monte Carlo comparison of parametric and nonparametric estimations of flood frequencies. J Hydrol 108:295–308

    Article  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  Google Scholar 

  • Archetti R, Bolognesi A, Casadio A, Maglionico M (2011) Development of flood probability charts for urban drainage network in coastal areas through a simplified joint assessment approach. Hydrol Earth Syst Sci 15(10):3115–3122

    Article  Google Scholar 

  • Atkinson DE, Forbes DL, James TS (2016) Dynamic coasts in a changing climate. In Canada's marine coasts in a changing climate, (ed.) D.S. Lemmen, F.J. Warren, T.S. James and C.S.L. Mercer Clarke; Government of Canada, Ottawa, Ontario, p. 27–68

  • Behnen K, Huskova M, Neuhaus G (1985) Rank estimators of scores for testing independence. Stat Decis 3:239–262

    Google Scholar 

  • Bouezmarni T, Ghouch E, Taamouti A (2013) Bernstein estimator for unbounded copula densities. Stat Risk Model 30(4):343–360. https://doi.org/10.1524/strm.2013.2003

    Article  Google Scholar 

  • Bouezmarni T, Rolin JM (2003) Bernstein estimator for unbounded density function. Université Catholique de Louvain-la-Neuve

  • Bouezmarni T, Rombouts J (2008) Semiparametric density estimation using copulas for multivariate positive data. Comput Stat Data Anal 53:2040–2054

    Article  Google Scholar 

  • British Columbia Ministry of Environment (2013) Sea level rise adaptation primer, a tool kit to build adaptive capacity on Canada's South coasts. Available online: https://www2.gov.bc.ca/assets/gov/environment/climate-change/adaptation/resources/slr-primer.pdf (Accessed on 14 Apr 2021)

  • Brown BM, Chen SX (1999) Beta-bernstein smoothing for regression curves with compact support. Scand J Stat 26(1):47–59

    Article  Google Scholar 

  • Brunner MI, Favre A, Seibert J (2016) Bivariate return periods and their importance for flood peak and volume estimations. Wiley Interdiscip Rev: Water 3(6):819–833. https://doi.org/10.1002/wat2.1173

    Article  Google Scholar 

  • Chen S (2015) Optimal Bandwidth Selection for Kernel Density Functionals Estimation. J Probab Stat 2015:1–21. https://doi.org/10.1155/2015/242683

    Article  Google Scholar 

  • Chen SX (1999) Beta kernel estimators for density functions. Comput Stat Data Anal 31(2):131–145

    Article  Google Scholar 

  • Chen SX (2000) Beta kernel for regression curve. Stat Sin 10:73–92

    Google Scholar 

  • Chen SX, Huang T (2007) Nonparametric estimation of copula functions for dependent modeling. Can J Stat 35:265–282

    Article  Google Scholar 

  • Claeskens G, Hjort NL (2008) Model selection and model averaging, Cambridge University Press

  • Coles S, Heffernan J, Tawn J (1999) Dependence measures for extreme value analyses. Extremes 2(4):339–365

    Article  Google Scholar 

  • Coles SG (2001) An introduction to statistical modelling of extreme values. Springer, London

    Book  Google Scholar 

  • Charpentier A, Fermanian J, Scaillet O (2006) Copulas: from theory to application in finance, 1st edn, Risk Books, Torquay, UK, chap The Estimation of Copulas: Theory and Practice

  • Deheuvels P, Hominal P (1979) Estimation non paramétrique de la densité compte tenu d’informations sur le support. Rev Stat Appl 27:47–68

    Google Scholar 

  • Diers D, Eling M, Marek S (2012) Dependence modeling in non-life insurance using the Bernstein copula. Insur Math Econ 50:430–436

    Article  Google Scholar 

  • Dooge JCE (1986) Looking for hydrologic laws. Water Resour Res 22(9):465–485

    Google Scholar 

  • Favre A-C, Adlouni SE, Perreault L, Thiemonge N, Bobee B (2004) Multivariate hydrological frequency analysis using copulas. Water Resour Res 40. https://doi.org/10.1029/2003WR002456

  • Genest CKG, Rivest L (1995) Semiparametric estimation procedure of dependance parameters in multivariate families of distributions. Biometrika 82:543–552

    Article  Google Scholar 

  • Ghanbari M, Arabi M, Kao S, Obeysekera J, Sweet W (2021) Climate change and changes in compound coastal-riverine flooding hazard along the U.S. coasts. Earth’s Future 9(5):1. https://doi.org/10.1029/2021ef002055

    Article  Google Scholar 

  • Gijbels I, Mielniczuk J (1990) Estimating the density of a copula function. Commun Stat Theory Methods 19:445–464

    Article  Google Scholar 

  • Gringorten II (1963) A plotting rule of extreme probability paper. J Geophys Res 68(3):813–814

    Article  Google Scholar 

  • Hannan EJ, Quinn BG (1979) The Determination of the order of an autoregression. J Roy Stat Soc B 41:190–195

    Google Scholar 

  • Haggag MMM (2014) New Criteria of Model selection and model averaging in linear regression models. Am J Theor Appl Stat 3(5):148–166

    Article  Google Scholar 

  • Härdle W (1991) Kernel density estimation. In Smoothing Techniques. Springer Series in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4432-5_2

  • Harrell FE, Davis CE (1982) A new distribution-free quantile estimator. Biometrika 69(3):635–640

    Article  Google Scholar 

  • Hendry A, Haigh ID, Nicholls RJ, Winter H, Neal R, Wahl T, Joly-Laugel A, Darby SE (2019) Assessing the characteristics and drivers of compound flooding events around the UK coast. Hydrol Earth Syst Sci 23:3117–3139. https://doi.org/10.5194/hess-23-3117-2019

    Article  Google Scholar 

  • Huang Q, Chen Z (2015) Multivariate flood risk assessment based on the secondary return period. J Lake Sci 27(2):352–360. https://doi.org/10.18307/2015.0221

    Article  Google Scholar 

  • Jane R, Cadavid L, Obeysekera J, Wahl T (2020) Multivariate statistical modelling of the drivers of compound flood events in south Florida. Nat Hazard 20(10):2681–2699. https://doi.org/10.5194/nhess-20-2681-2020

    Article  Google Scholar 

  • Joe H (1997) Multivariate models and dependence concept. CRC Press, Boca Raton, Fla

    Book  Google Scholar 

  • Jones MC (1993) Simple boundary correction for kernel density estimation. Stat Comput 3:135–146

    Article  Google Scholar 

  • Jones MC, Marron JS, Sheather SJ (1996) A brief survey of bandwidth selection for density estimation. J Am Stat Assoc 91:401–407

    Article  Google Scholar 

  • Karmakar S, Simonovic SP (2008) Bivariate flood frequency analysis. Part-1: determination of marginal by parametric and non-parametric techniques. J Flood Risk Manag 1:190–200. https://doi.org/10.1111/j.1753-318X.2008.00022.x

    Article  Google Scholar 

  • Karmakar S, Simonovic SP (2009) Bivariate flood frequency analysis. Part-2: a copula-based approach with mixed marginal distributions. J Flood Risk Manag 2(1):1–13. https://doi.org/10.1111/j.1753-318X.2009.01020.x.

  • Kim KD, Heo JH (2002) Comparative study of flood quantiles estimation by nonparametric models. J Hydrol 260:176–193

    Article  Google Scholar 

  • Kim TW, Valdes JB, Yoo C (2006) Nonparametric approach for bivariate drought characterization using Palmer drought index. J Hydrol Eng 11(2):134–143

    Article  Google Scholar 

  • Klein B, Schumann AH, Pahlow M (2011) Copulas-New risk assessment methodology for dam safety, food risk assessment and management. Springer, pp. 149–185

  • Kulpa T (1999) On approximation of copulas. Int J Math Math Sci 22:259–269

    Article  Google Scholar 

  • Latif S, Mustafa F (2020) A nonparametric copula distribution framework for bivariate joint distribution analysis of flood characteristics for the Kelantan River basin in Malaysia. AIMS Geosci 6(2):171–198. https://doi.org/10.3934/geosci.2020012

    Article  Google Scholar 

  • Legates DR, McCabe GJ (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35(1):233–241

    Article  Google Scholar 

  • Liebscher E (2005) Semiparametric density estimators using copulas. Commun Stat Theory Methods 67:318–348

    Google Scholar 

  • Lorentz G (1953) Bernstein polynomials. University of Toronto Press

    Google Scholar 

  • Masina M, Lamberti A, Archetti R (2015) Coastal flooding: A copula based approach for estimating the joint probability of water levels and waves. Coast Eng 97:37–52. https://doi.org/10.1016/j.coastaleng.2014.12.010

    Article  Google Scholar 

  • Moon YI, Lall U (1993) A kernel quantile function estimator for flood frequency analysis. Rep Pap 194. https://digitalcommons.usu.edu/water_rep/194

  • Moon Y-I, Lall U (1994) Kernel function estimator for flood frequency analysis. Water Resour Res 30(11):3095–3103

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900

    Article  Google Scholar 

  • Müller HG (1991) Smooth optimum kernel estimators near endpoints. Biometrika 78:521–530

    Article  Google Scholar 

  • Nagler T (2014) Kernel methods for vine copula estimation. Master’s thesis, Technische Universität München. https://mediatum.ub.tum.de/doc/1231221/1231221.pdf

  • Naseri K, Hummel MA (2022) A Bayesian copula-based nonstationary framework for compound flood risk assessment along US coastlines. J Hydrol 610:128005. https://doi.org/10.1016/j.jhydrol.2022.128005

    Article  Google Scholar 

  • Nash J, Sutcliffe J (1970) River flow forecasting through conceptual models part i e a discussion of principles. J Hydrol 10(3):282e290

    Article  Google Scholar 

  • Nelsen RB (2006) An introduction to copulas. Springer, New York

    Google Scholar 

  • Paprotny D, Vousdoukas MI, Morales-Nápoles O, Jonkman SN, Feyen L (2018) Compound flood potential in Europe. Hydrol Earth Syst Sci Discuss. https://doi.org/10.5194/hess-2018-132

    Article  Google Scholar 

  • Pfeifer D, Strassburger D, Philipps J (2009) Modelling and simulation of dependence structures in nonlife insurance with Bernstein copulas. Working Paper, Carl von Ossietzky University, Oldenburg

  • Pirani FJ, Najafi MR (2020) Recent trends in individual and multivariate flood drivers in Canada’s coasts. Water Resour Res 56(8). https://doi.org/10.1029/2020WR027785

    Article  Google Scholar 

  • Rauf UFA, Zeephongsekul P (2014) Analysis of rainfall severity and duration in Victoria, Australia using nonparametric copulas and marginal distributions. Water Resour Manag 28:4835–4856. https://doi.org/10.1007/s11269-014-0779-8

    Article  Google Scholar 

  • Reddy MJ, Ganguli P (2012) Bivariate flood frequency analysis of Upper Godavari River flows using Archimedean copulas. Water Resour Manag. https://doi.org/10.1007/s11269-012-0124-z

    Article  Google Scholar 

  • Renault O, Scaillet O (2004) On the way to recovery: a nonparametric bias free estimation of recovery rate densities. J Bank Finance 28:2915–2931

    Article  Google Scholar 

  • Resio DT, Westerink JJ (2008) Modeling the physics of storm surges. Phys Today 61(9). https://doi.org/10.1063/1.2982120

    Article  Google Scholar 

  • Rosenblatt M (1956) Remarks on some nonparametric estimates of a density function. Ann Math Stat 27(3):832–837. https://doi.org/10.1214/aoms/1177728190

    Article  Google Scholar 

  • Saklar A (1959) Functions de repartition n dimensions et leurs marges. Publications De L’institut De Statistique De L’université De Paris 8:229–231

    Google Scholar 

  • Salvadori G (2004) Bivariate return periods via-2 copulas. J Royal Stat Soc Series B 1:129–144. https://doi.org/10.1016/j.stamet.2004.07.002

    Article  Google Scholar 

  • Salvadori G, De Michele C, Durante F (2011) Multivariate design via copulas. Hydrol Earth Sys Sci Discuss 8(3):5523–5558. https://doi.org/10.5194/hessd-8-5523-2011

    Article  Google Scholar 

  • Salvadori G, Durante F, De Michele C, Bernardi M, Petrella L (2016) A multivariate copula-based framework for dealing with hazard scenarios and failure probabilities. Water Resour Res 52(5):3701–3721. https://doi.org/10.1002/2015wr017225.SERINALDI

    Article  Google Scholar 

  • Sancetta A, Satchell S (2004) The Bernstein copula and its applications tomodeling and approximations of multivariate distributions. Economet Theor 20:1–38

    Article  Google Scholar 

  • Santos VM, Casas-Prat M, Poschlod B, Ragno E, van den Hurk B, Hao Z, Najafi H (2021) Statistical modelling and climate variability of compound surge and precipitation events in a managed water system: a case study in the Netherlands. Hydrol Earth Syst Sci 25(6):3595–3615. https://doi.org/10.5194/hess-25-3595-2021

    Article  Google Scholar 

  • Schuster E (1985) Incorporating support constraints into nonparametric estimators of densities. Commun Stat Theory Methods 14:1123–1136

    Article  Google Scholar 

  • Schwarz GE (1978) Estimating the dimension of a model. Ann Stat 6(2):461e464

    Article  Google Scholar 

  • Serinaldi F (2015) Dismissing return periods! Stoch Environ Res Risk A 29(4):1179–1189. https://doi.org/10.1007/s00477-014-0916-1

    Article  Google Scholar 

  • Sevat E, Dezetter A (1991) Selection of calibration objective functions in the context of rainfall-runoff modeling in a sudanese savannah area. Hydrol Sci J 36(4):307–330

    Article  Google Scholar 

  • Silverman BW (1986) Density estimation for statistics and data analysis, 1st edn. Chapman and Hall, London

    Google Scholar 

  • Shahid L, Firuza M (2021) Bivariate joint distribution analysis of the flood characteristics under semiparametric copula distribution framework for the Kelantan River basin in Malaysia. J Ocean Eng Sci 6(2):128–145. ISSN 2468–0133. https://doi.org/10.1016/j.joes.2020.06.003

  • Shahid L, Simonovic SP (2022) Compounding joint impact of rainfall, storm surge and river discharge on coastal flood risk: An approach based on 3D fully nested archimedean copulas. Environ. Earth Sci; preprint

  • Sharma A, Lall U, Tarboton DG (1998) Kernel bandwidth selection for a first order nonparametric streamflow simulation model. Stoch Hydrol Hydraul 12:33–52

    Article  Google Scholar 

  • Sheather SJ, Jones MC (1991) A reliable data-based bandwidth selection method for kernel density estimation. J Roy Stat Soc B 53:683–690

    Google Scholar 

  • Shiau JT (2003) Return period of bivariate distributed hydrological events. Stoch Environ Res Risk Assess 17(1–2):42–57. https://doi.org/10.1007/s00477-003-0125-9

    Article  Google Scholar 

  • Shih J, Louis T (1995) Inferences on the association parameter in copula models for bivariate survival data. Biometrics 51:1384–1399

    Article  Google Scholar 

  • Singh J, Knapp HV, Demissie M (2004) Hydrologic modeling of the Iroquois River watershed using HSPF and SWAT. ISWS CR 2004–08. Champaign, Ill.: Illinois State Water Survey. Available at: www.sws.uiuc.edu/pubdoc/CR/ISWSCR2004-08.pdf

  • Sraj M, Bezak N, Brilly M (2014) Bivariate flood frequency analysis using the copula function: A case study of the Litija station on the Sava River. Hydrol Process 29:225–238

    Article  Google Scholar 

  • Tarboton DG, Sharma A, Lall U (1998) Disaggregation procedures for stochastic hydrology based on nonparametric density estimation. Water Resour Res 34(1):107–119

    Article  Google Scholar 

  • Tenbusch A (1994) Two-dimensional Bernstein polynomial density estimation. Metrika 41:233–253

    Article  Google Scholar 

  • Vitale R (1975) A Bernstein polynomial approach to density estimation. In: Puri M (ed) Statistical Inference and Related Topics, vol 2. Academic Press, New York, pp 87–99

    Chapter  Google Scholar 

  • Wahl T, Jain S, Bender J, Meyers SD, Luther ME (2015) Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nat Clim Chang 5:1093–1097. https://doi.org/10.1038/nclimate2736

    Article  Google Scholar 

  • Wand MP, Jones MC (1995) Kernel smoothing. Chapman and Hall, London, UK

    Book  Google Scholar 

  • Wand MP, Marron JS, Ruppert D (1991) Transformations in density estimation: rejoinder (in theory and methods). J Am Stat Assoc 86:360–361

    Google Scholar 

  • Weiss GNF, Scheffer M (2012) Smooth nonparametric bernstein vine copulas. SSRN Electron J. https://doi.org/10.2139/ssrn.2154458

    Article  Google Scholar 

  • Willmott C, Kenji M (2005) Advantage of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in assessing average model performance. Clim Res 30:79–82

    Article  Google Scholar 

  • Xu K, Ma C, Lian J, Bin L (2014) Joint probability analysis of extreme precipitation and storm tide in a coastal city under changing environment. PLoS ONE 9(10):e109341–e109341

    Article  Google Scholar 

  • Xu H, Xu K, Lian J, Ma C (2019) Compound effects of rainfall and storm tides on coastal flooding risk. Stoch Env Res Risk Assess 33:1249–1261

    Article  Google Scholar 

  • Zhang L (2005) Multivariate hydrological frequency analysis and risk mapping. Doctoral dissertation, Beijing Normal University.

  • Zhang L, Singh VP (2007) Trivariate flood frequency analysis using the Gumbel-Hougaard copula. J Hydrol Eng 12(4):431–439. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(431)

    Article  Google Scholar 

  • Zheng F, Seth W, Michael L, Sisson SA (2014) Modeling dependence between extreme rainfall and storm surge to estimate coastal flooding risk. Water Resour Res 50(3):2050–2071

    Article  Google Scholar 

  • Zheng F, Westra S, Sisson SA (2013) Quantifying the between extreme rainfall and storm surge in the coastal zone. J Hydrol 505:172–187

    Article  Google Scholar 

  • Zscheischler J, Westra S, van den Hurk BJJM, Seneviratne SI, Ward PJ, Pitman A, AghaKouchak A, Bresch DN, Leonard M, Wahl T, Zhang X (2018) Future climate risk from compound events. Nat Clim Chang 8:469–477. https://doi.org/10.1038/s41558-018-0156-3

    Article  Google Scholar 

Download references

Acknowledgements

The work presented in the paper has been funded by the Natural Sciences and Engineering Council of Canada's discovery grant to the second author. We thank Fisheries and Ocean Canada for providing the coastal water level observations and Environment and Climate Change Canada for daily streamflow discharge records. Special thanks to Canadian Hydrographic Service for providing the tidal data.

Funding

This research was funded by the Natural Sciences and Engenirreing Research Council of Canada (NSERC) collaborative grant with the Institute for Catastrophic Loss Reduction (ICLR) to the second author (Slobodan P. Simonovic).

Author information

Authors and Affiliations

Authors

Contributions

Shahid Latif (SL): Conceptualization, Methodology, Software, Visualization, Investigation, Validation, Writing-Original draft preparation. Slobodan P. Simonovic (SPS): Supervision. Conceptualization, Writing- Reviewing and Editing.

Corresponding author

Correspondence to Shahid Latif.

Ethics declarations

Ethical Approval

Not Applicable.

Consent to Participate

Not Applicable.

Consent for Publication

All authors have duly consented to publish this manuscript.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 184 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latif, S., Simonovic, S.P. Nonparametric Approach to Copula Estimation in Compounding The Joint Impact of Storm Surge and Rainfall Events in Coastal Flood Analysis. Water Resour Manage 36, 5599–5632 (2022). https://doi.org/10.1007/s11269-022-03321-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-022-03321-y

Keywords

Navigation