Skip to main content

A Modelling Approach to Forecast the Effect of Climate Change on the Tagus-Segura Interbasin Water Transfer

Abstract

This study was conducted in the upper Tagus River basin (UTRB), whose available water resources are partially transferred from the Entrepeñas and Buendía reservoirs after local needs satisfaction to the Segura River basin using the Tagus-Segura water transfer (TSWT), the largest hydraulic infrastructure in Spain. This study evaluates the climate change impact on the TSWT by considering future evaporation rates and bathymetric changes in the Entrepeñas and Buendía reservoirs. The findings of this study indicate a consistent decline in precipitation and an increase in temperature and evaporation under all climate impact scenarios. Consequently, inflows to the reservoirs will decline by 19% (RCP 4.5) and 53% (RCP 8.5) for 2070–2099, which could reduce water volumes that could be transferred to the Segura basin by more than 60%. The simulation of the TSWT operation rules, taking into account the impact of future evaporation and bathymetric changes, demonstrates an additional increase in reductions of water transfer of around 4%, which reveals the need to consider these effects in hydrological planning.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abbaspour KC, Rouholahnejad E, Vaghefi S et al (2015) A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J Hydrol 524:733–752. https://doi.org/10.1016/j.jhydrol.2015.03.027

    Article  Google Scholar 

  2. Aldaya MM, Custodio E, Llamas R et al (2019) An academic analysis with recommendations for water management and planning at the basin scale: A review of water planning in the Segura River Basin. Sci Total Environ 662:755–768. https://doi.org/10.1016/j.scitotenv.2019.01.266

    Article  Google Scholar 

  3. Al-Safi HIJ, Sarukkalige PR (2020) The application of conceptual modelling to assess the impacts of future climate change on the hydrological response of the Harvey River catchment. J Hydro Environ Res 28:22–33. https://doi.org/10.1016/j.jher.2018.01.006

    Article  Google Scholar 

  4. Althoff D, Rodrigues LN, da Silva DD (2020) Impacts of climate change on the evaporation and availability of water in small reservoirs in the Brazilian savannah. Clim Change 159:215–232. https://doi.org/10.1007/s10584-020-02656-y

    Article  Google Scholar 

  5. Andreu J, Capilla J, Sanchís E (1996) AQUATOOL, a generalized decision-support system for water-resources planning and operational management. J Hydrol 177:269–291. https://doi.org/10.1016/0022-1694(95)02963-X

    Article  Google Scholar 

  6. Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large Area Hydrologic Modeling and Assessment Part I: Model Development. J Am Water Resour Assoc 34:73–89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x

    Article  Google Scholar 

  7. Belmar O, Velasco J, Martinez-Capel F (2011) Hydrological Classification of Natural Flow Regimes to Support Environmental Flow Assessments in Intensively Regulated Mediterranean Rivers, Segura River Basin (Spain). Environ Manag 47:992–1004. https://doi.org/10.1007/s00267-011-9661-0

    Article  Google Scholar 

  8. Cabezas F (2013) El sistema de cabecera del Tajo y el trasvase Tajo-Segura. Ministerio de Transición Ecológica. https://www.miteco.gob.es/images/es/Anexo%20tecnico%20ATS_tcm30-136922.pdf. Accessed 6 Oct 2020

  9. Chen M, Gassman PW, Srinivasan R et al (2020a) Analysis of alternative climate datasets and evapotranspiration methods for the Upper Mississippi River Basin using SWAT within HAWQS. Sci Total Environ 720:137562. https://doi.org/10.1016/j.scitotenv.2020.137562

    Article  Google Scholar 

  10. Chen Z, Zhu Z, Jiang H, Sun S (2020b) Estimating daily reference evapotranspiration based on limited meteorological data using deep learning and classical machine learning methods. J Hydrol 591:125286. https://doi.org/10.1016/j.jhydrol.2020.125286

    Article  Google Scholar 

  11. de Almeida Bressiani D, Srinivasan R, Jones CA, Mendiondo EM (2015) Effects of spatial and temporal weather data resolutions on streamflow modeling of a semi-arid basin, Northeast Brazil. Int J Agric Biol Eng 8:1–16. https://doi.org/10.3965/j.ijabe.20150803.970

  12. Dile YT, Daggupati P, George C et al (2016) Introducing a new open source GIS user interface for the SWAT model. Environ Model Softw 85:129–138. https://doi.org/10.1016/j.envsoft.2016.08.004

    Article  Google Scholar 

  13. Estrela T, Pérez-Martin MA, Vargas E (2012) Impacts of climate change on water resources in Spain. Hydrol Sci J 57:1154–1167. https://doi.org/10.1080/02626667.2012.702213

    Article  Google Scholar 

  14. Herrera S, Fernández J, Gutiérrez JM (2016) Update of the Spain02 gridded observational dataset for EURO-CORDEX evaluation: assessing the effect of the interpolation methodology: EURO-CORDEX COMPLIANT UPDATE OF SPAIN02. Int J Climatol 36:900–908. https://doi.org/10.1002/joc.4391

    Article  Google Scholar 

  15. Kolokytha E, Malamataris D (2020) Integrated Water Management Approach for Adaptation to Climate Change in Highly Water Stressed Basins. Water Resour Manag 34:1173–1197. https://doi.org/10.1007/s11269-020-02492-w

    Article  Google Scholar 

  16. Krysanova V, Srinivasan R (2015) Assessment of climate and land use change impacts with SWAT. Reg Environ Change 15:431–434. https://doi.org/10.1007/s10113-014-0742-5

    Article  Google Scholar 

  17. Krysanova V, Vetter T, Eisner S et al (2017) Intercomparison of regional-scale hydrological models and climate change impacts projected for 12 large river basins worldwide—a synthesis. Environ Res Lett 12:105002. https://doi.org/10.1088/1748-9326/aa8359

    Article  Google Scholar 

  18. Lobanova A, Koch H, Liersch S et al (2016) Impacts of changing climate on the hydrology and hydropower production of the Tagus River basin: Hydrology and Hydropower of the Tagus River Basin under Climate Change. Hydrol Process 30:5039–5052. https://doi.org/10.1002/hyp.10966

    Article  Google Scholar 

  19. Lobanova A, Liersch S, Nunes JP et al (2018) Hydrological impacts of moderate and high-end climate change across European river basins. J Hydrol Reg Stud 18:15–30. https://doi.org/10.1016/j.ejrh.2018.05.003

    Article  Google Scholar 

  20. Lobanova A, Liersch S, Tàbara JD et al (2017) Harmonizing human-hydrological system under climate change: A scenario-based approach for the case of the headwaters of the Tagus River. J Hydrol 548:436–447. https://doi.org/10.1016/j.jhydrol.2017.03.015

    Article  Google Scholar 

  21. Lorenzo-Lacruz J, Vicente-Serrano SM, López-Moreno JI et al (2010) The impact of droughts and water management on various hydrological systems in the headwaters of the Tagus River (central Spain). J Hydrol 386:13–26. https://doi.org/10.1016/j.jhydrol.2010.01.001

    Article  Google Scholar 

  22. Malmström VH (1969) A New Approach To The Classification Of Climate. J Geogr 68:351–357. https://doi.org/10.1080/00221346908981131

    Article  Google Scholar 

  23. Martínez-Granados D, Maestre-Valero JF, Calatrava J, Martínez-Alvarez V (2011) The Economic Impact of Water Evaporation Losses from Water Reservoirs in the Segura Basin, SE Spain. Water Resour Manag 25:3153–3175. https://doi.org/10.1007/s11269-011-9850-x

    Article  Google Scholar 

  24. Melgarejo-Moreno J, López-Ortiz M-I, Fernández-Aracil P (2019) Water distribution management in South-East Spain: A guaranteed system in a context of scarce resources. Sci Total Environ 648:1384–1393. https://doi.org/10.1016/j.scitotenv.2018.08.263

    Article  Google Scholar 

  25. MIMAM (2020) Water in Spain. Ministerio de Medio Ambiente. https://www.miteco.gob.es/es/agua/temas/planificacion-hidrologica/libro-blanco-del-agua/. Accessed 14 Nov 2020

  26. Molina-Navarro E, Martínez-Pérez S, Sastre-Merlín A, Bienes-Allas R (2014) Hydrologic Modeling in a Small Mediterranean Basin as a Tool to Assess the Feasibility of a Limno-Reservoir. J Environ Qual 43:121–131. https://doi.org/10.2134/jeq2011.0360

    Article  Google Scholar 

  27. Molina-Navarro E, Nielsen A, Trolle D (2018) A QGIS plugin to tailor SWAT watershed delineations to lake and reservoir waterbodies. Environ Model Softw 108:67–71. https://doi.org/10.1016/j.envsoft.2018.07.003

    Article  Google Scholar 

  28. Moriasi DN, Gitau MW, Pai N, Daggupati P (2015) Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans ASABE 58:1763–1785. https://doi.org/10.13031/trans.58.10715

  29. Morote Á-F, Olcina J, Rico A-M (2017) Challenges and Proposals for Socio-Ecological Sustainability of the Tagus-Segura Aqueduct (Spain) under Climate Change. Sustainability 9:2058. https://doi.org/10.3390/su9112058

    Article  Google Scholar 

  30. Ndhlovu G, Woyessa Y (2020) Modelling impact of climate change on catchment water balance, Kabompo River in Zambezi River Basin. J Hydrol Reg Stud 27:100650. https://doi.org/10.1016/j.ejrh.2019.100650

    Article  Google Scholar 

  31. Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2011) TR-406_Soil and Water Assessment Tool Theoretical Documentation.pdf

  32. Pellicer-Martínez F, Martínez-Paz JM (2018) Climate change effects on the hydrology of the headwaters of the Tagus River: implications for the management of the Tagus-Segura transfer. Hydrol Earth Syst Sci 22:6473–6491. https://doi.org/10.5194/hess-22-6473-2018

    Article  Google Scholar 

  33. Peral C, Navascués B, Ramos Calzado P (2017) Serie de precipitación diaria en rejilla con fines climáticos

  34. Pérez-Blanco CD, Essenfelder AH, Gutiérrez-Martín C (2020) A tale of two rivers: Integrated hydro-economic modeling for the evaluation of trading opportunities and return flow externalities in inter-basin agricultural water markets. J Hydrol 584:124676. https://doi.org/10.1016/j.jhydrol.2020.124676

    Article  Google Scholar 

  35. PricewaterhouseCoopers (2013) The economic impact of the Tajo-Segura aqueduct

  36. Pulido-Velazquez D, García-Aróstegui JL, Molina J-L, Pulido-Velazquez M (2015) Assessment of future groundwater recharge in semi-arid regions under climate change scenarios (Serral-Salinas aquifer, SE Spain). Could increased rainfall variability increase the recharge rate?: Recharge in semi-arid regions under climate change scenarios. Hydrol Process 29:828–844. https://doi.org/10.1002/hyp.10191

    Article  Google Scholar 

  37. Rupérez-Moreno C, Senent-Aparicio J, Martinez-Vicente D et al (2017) Sustainability of irrigated agriculture with overexploited aquifers: The case of Segura basin (SE, Spain). Agric Water Manag 182:67–76. https://doi.org/10.1016/j.agwat.2016.12.008

    Article  Google Scholar 

  38. Sabbaghi MA, Nazari M, Araghinejad S, Soufizadeh S (2020) Economic impacts of climate change on water resources and agriculture in Zayandehroud river basin in Iran. Agric Water Manag 241:106323. https://doi.org/10.1016/j.agwat.2020.106323

    Article  Google Scholar 

  39. Saha S, Moorthi S, Pan H-L et al (2010) The NCEP Climate Forecast System Reanalysis. Bull Am Meteorol Soc 91:1015–1058. https://doi.org/10.1175/2010BAMS3001.1

    Article  Google Scholar 

  40. Senent-Aparicio J, Pérez-Sánchez J, Carrillo-García J, Soto J (2017) Using SWAT and Fuzzy TOPSIS to Assess the Impact of Climate Change in the Headwaters of the Segura River Basin (SE Spain). Water 9:149. https://doi.org/10.3390/w9020149

    Article  Google Scholar 

  41. Tan ML, Gassman PW, Yang X, Haywood J (2020) A review of SWAT applications, performance and future needs for simulation of hydro-climatic extremes. Adv Water Resour 143:103662. https://doi.org/10.1016/j.advwatres.2020.103662

    Article  Google Scholar 

  42. Thornes JB, Rowntree KM (2006) Integrated catchment management in semiarid environments in the context of the European Water Framework Directive. Land Degrad Dev 17:355–364. https://doi.org/10.1002/ldr.742

    Article  Google Scholar 

  43. Vaghefi SA, Abbaspour N, Kamali B, Abbaspour KC (2017) A toolkit for climate change analysis and pattern recognition for extreme weather conditions – Case study: California-Baja California Peninsula. Environ Model Softw 96:181–198. https://doi.org/10.1016/j.envsoft.2017.06.033

    Article  Google Scholar 

  44. Vargas-Amelin E, Pindado P (2014) The challenge of climate change in Spain: Water resources, agriculture and land. J Hydrol 518:243–249. https://doi.org/10.1016/j.jhydrol.2013.11.035

    Article  Google Scholar 

  45. Wurbs RA, Ayala RA (2014) Reservoir evaporation in Texas, USA. J Hydrol 510:1–9. https://doi.org/10.1016/j.jhydrol.2013.12.011

    Article  Google Scholar 

  46. Xu C-Y, Singh VP (2001) Evaluation and generalization of temperature-based methods for calculating evaporation. Hydrol Process 15:305–319. https://doi.org/10.1002/hyp.119

    Article  Google Scholar 

  47. Yazdandoost F, Moradian S, Izadi A (2020) Evaluation of Water Sustainability under a Changing Climate in Zarrineh River Basin, Iran. Water Resour Manag 34:4831–4846. https://doi.org/10.1007/s11269-020-02693-3

    Article  Google Scholar 

  48. Zaman M, Naveed Anjum M, Usman M et al (2018) Enumerating the Effects of Climate Change on Water Resources Using GCM Scenarios at the Xin’anjiang Watershed, China. Water 10:1296. https://doi.org/10.3390/w10101296

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Scribbr Proofreading & Editing Services.

Funding

This work has been partly supported by the research project CM/JIN/2019-035 funded by the University of Alcalá. Adrián López-Ballesteros acknowledges funding support by the Spanish FPU scholarship for the training programme for academic staff (FPU17/00923).

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Javier Senent-Aparicio, Adrián López-Ballesteros and Francisco Cabezas. The first draft of the manuscript was written by Javier Senent-Aparicio and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Javier Senent-Aparicio.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest/Competing Interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCTYPE 44.7 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Senent-Aparicio, J., López-Ballesteros, A., Cabezas, F. et al. A Modelling Approach to Forecast the Effect of Climate Change on the Tagus-Segura Interbasin Water Transfer. Water Resour Manage 35, 3791–3808 (2021). https://doi.org/10.1007/s11269-021-02919-y

Download citation

Keywords

  • Tagus-Segura water transfer
  • SWAT
  • Climate change
  • Evaporation
  • Water management
  • Mediterranean