Skip to main content
Log in

Uncertainty Analysis of Climate Change Impacts on Flood Frequency by Using Hybrid Machine Learning Methods

Water Resources Management Aims and scope Submit manuscript

Cite this article


In the present study, for the first time, a new framework is used by combining metaheuristic algorithms, decomposition and machine learning for flood frequency analysis under climate-change conditions and application of HadCM3 (A2 and B2 scenarios), CGCM3 (A2 and A1B scenarios) and CanESM2 (RCP2.6, RCP4.5 and RCP8.5 scenarios) in global climate models (GCM). In the proposed framework, Multivariate Adaptive Regression Splines (MARS) and M5 Model tree are used for classification of precipitation (wet and dry days), whale optimization algorithm (WOA) is considered for training least square support vector machine (LSSVM), wavelet transform (WT) is used for decomposition of precipitation and temperature, LSSVM-WOA, LSSVM, K nearest neighbor (KNN) and artificial neural network (ANN) are performed for downscaling precipitation and temperature, and discharge is simulated under present period (1972–2000), near future (2020–2040) and far future (2070–2100). Log normal distribution is used for flood frequency analysis. Furthermore, analysis of variance (ANOVA) and fuzzy method are employed for uncertainty analysis. Karun3 Basin, in southwest of Iran, is considered as a case study. Results indicated that MARS performed better than M5 model tree. In downscaling, ANN and LSSVM_WOA slightly outperformed other machine learning algorithms. Results of simulating the discharge showed superiority of LSSVM_WOA_WT algorithm (Nash-Sutcliffe efficiency (NSE) = 0.911). Results of flood frequency analysis revealed that 200-year discharge decreases for all scenarios, except CanESM2 RCP2.6 scenario, in the near future. In the near and far future periods, it is obvious from ANOVA uncertainty analysis that hydrological models are one of the most important sources of uncertainty. Based on the fuzzy uncertainty analysis, HadCM3 model has lower uncertainty in higher return periods (up to 60% lower than other models in 1000-year return period).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data Availability

All data generated or used during the study are applicable if requested.


Download references


The research has not been supported through any funds.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Saeed Farzin.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

The authors have made a significant contribution to this manuscript, have seen and approved the final manuscript.

Consent to Publish

The authors have agreed to publish the study in water resource management.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anaraki, M.V., Farzin, S., Mousavi, SF. et al. Uncertainty Analysis of Climate Change Impacts on Flood Frequency by Using Hybrid Machine Learning Methods. Water Resour Manage 35, 199–223 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: