Skip to main content
Log in

Evaluating Different Machine Learning Models for Runoff and Suspended Sediment Simulation

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

In the present study, prediction of runoff and sediment at Polavaram and Pathagudem sites of the Godavari basin was carried out using machine learning models such as artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). Different combinations of antecedent stage, current day stage and antecedent runoff for current day runoff prediction and antecedent runoff, current day runoff and antecedent sediment for current day sediment prediction were explored using Gamma test (GT) to select the effective input variables for runoff and sediment prediction. The performance during training and testing periods of the ANN and ANFIS models were evaluated quantitatively through various statistical indices and qualitative by visual observation. After comparing the qualified results of different ANN and ANFIS models it was found that ANN model with double hidden layers and ANFIS model with membership function (Triangular, 3) performed well for runoff and sediment predictions, respectively for Pathagudem site. ANFIS model with membership function (Triangular, 3) and ANFIS model with membership function (Gaussian, 3) shown the best results for runoff and sediment prediction, respectively, for Polavaram site. The effect of input variables on the selected models was also validated by the way of sensitivity analysis. The results of sensitivity analysis was found that the current day runoff mostly depends on present day stage and present day sediment depends on current day runoff.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbasi Shoshtari S, Kashefipoor M (2006) Estimation of suspended sediment using artificial neural networks (Case study: Ahwaz station) 7th international river engineering conference, Ahwaz, IR IRAN. p 813

  • Adamowski J, Chan HF (2011) A wavelet neural network conjunction model for groundwater level forecasting. J Hydrol 407:28–40

    Article  Google Scholar 

  • Adib A, Mahmoodi A (2017) Prediction of suspended sediment load using ANN GA conjunction model with Markov chain approach at flood conditions. KSCE J Civ Eng 21:447. https://doi.org/10.1007/s12205-016-0444-2

    Article  Google Scholar 

  • Afan HA, El-Shafie A, Yaseen ZM et al (2015) ANN based sediment prediction model utilizing different input scenarios. Water Resour Manag. https://doi.org/10.1007/s11269-014-0870-1

  • Akrami SA, Nourani V, Hakim S (2014) Development of nonlinear model based on wavelet-ANFIS for rainfall forecasting at Klang Gates Dam. Water Resour Manag 28:2999–3018

    Article  Google Scholar 

  • Alizadeh MJ, Kavianpou MR, Kisi O, Nourani V (2017) A new approach for simulating and forecasting the rainfall-runoff process within the next two months. J Hydrol 548:588–597. https://doi.org/10.1016/j.jhydrol.2017.03.032

    Article  Google Scholar 

  • Alp M, Cigizoglu HK (2007) Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data. Environ Model Softw. https://doi.org/10.1016/j.envsoft.2005.09.009

  • Buyukyildiz M, Kumcu SY (2017) An estimation of the suspended sediment load using adaptive network based fuzzy inference system, support vector machine and artificial neural network models. Water Resour Manag 31:1343. https://doi.org/10.1007/s11269-017-1581-1

    Article  Google Scholar 

  • Chang FJ, Chen PA, Lu YR, Huang E, Chang KY (2014a) Real-time multistep- ahead water level forecasting by recurrent neural networks for urban flood control. J Hydrol 517:836–846

    Article  Google Scholar 

  • Chang FJ, Chen PA, Lu YR, Huang E, Chang KY (2014b) Watershed rainfall forecasting using neuro-fuzzy networks with the assimilation of multi-sensor information. J Hydrol 508:374–384

    Article  Google Scholar 

  • Ebtehaj I, Bonakdari H (2014) Performance evaluation of adaptive neural fuzzy inference system for sediment transport in sewers. Water Resour Manag. https://doi.org/10.1007/s11269-014-0774-0

  • Gholami V, Khaleghi MR, Sebghati (2016) A method of groundwater quality assessment based on fuzzy network-CANFIS and geographic information system (GIS). Appl Water Sci. https://doi.org/10.1007/s13201-016-0508-y

  • Jain SK (2012) Modeling river stage–discharge–sediment rating relation using support vector regression. Hydrol Res. https://doi.org/10.2166/nh.2011.101

  • Jang J-SR (1997) Adaptive network-based fuzzy inference system (ANFIS). IEEE Trans Syst Man Cybern 23:665–685

    Article  Google Scholar 

  • Jothiprakash V, Magar RB (2012) Multi-time-step ahead daily and hourly intermittent reservoir inflow predictionby artificial intelligent techniques using lumped and distributed data. J Hydrol 450-451:293–307

    Article  Google Scholar 

  • Kaltech AM (2015) Wavelet genetic algorithm-support vector regression (wavelet GA-SVR) for monthly flow forecasting. Water Resour Manag 29(4):1283–1293

    Article  Google Scholar 

  • Kisi O (2010) Wavelet regression model for short-term streamflow forecasting. J Hydrol 389:344–353

    Article  Google Scholar 

  • Kisi O, Cimen M (2011) A wavelet-support vector machine conjunction model for monthly streamflow forecasting. J Hydrol 399:132–140

    Article  Google Scholar 

  • Kisi O, Karmani ZM (2016) Suspended sediment modeling using neuro-fuzzy embedded fuzzy c-means clustering technique. Water Resour Manag. https://doi.org/10.1007/s11269-016-1405-8

  • Kisi O, Haktanir T, Ardiclioglu M, Ozturk O, Yalcin E, Uludag S (2009) Adaptive neuro-fuzzy computing technique for suspended sedimentestimation. Adv Eng Softw 40:438–444

    Article  Google Scholar 

  • Lohani AK, Goel N, Bhatia K (2014) Improving real time flood forecasting using fuzzy inference system. J Hydrol 509:25–41

    Article  Google Scholar 

  • Loukas YL (2001) Adaptive neuro-fuzzy inference system: an instant and architecture-free predictor for improved QSAR studies. J Med Chem 44(17):2772–2783

    Article  Google Scholar 

  • McCulloch W, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(5):115–133

    Article  Google Scholar 

  • Monfared A (2016) Simulation of suspended sediment load of Shapour River with using of artificial nerve network patterns (ANN) and phasic nerve (ANFIS) schedule series (stochastic). Int J Appl Eng Res 11(5):3645–3650

    Google Scholar 

  • Noori R, Karbassi AR, Moghaddamnia A, Han D, Zokaei-Ashtiani MH, Farokhnia A, GhafariGousheh M (2011) Assessment of input variables determination on the SVM model performance using PCA, gamma test and forward selection techniques for monthly streamflow prediction. J Hydrol 401(3–4):177–189

    Article  Google Scholar 

  • Pahlavani, Dehghani AA, Bahremand AR (2017) Intelligent estimation of flood hydrographs using an adaptive neuro–fuzzy inference system (ANFIS). Earth Syst Environ 3:35. https://doi.org/10.1007/s40808-017-0305-0

    Article  Google Scholar 

  • Rajaee T, Nourani V, Zounemat-Kermani M, Kisi O (2010) River suspended sediment load prediction: application of ANN and wavelet conjunction model. J Hydrol Eng 16(8):613–627

    Article  Google Scholar 

  • Ramezani F, Nikoo M, Nikoo M (2014) Artificial neural network weights optimization based on social-based algorithm to realize sediment over the river. Soft Comput 19(2):375–387. https://doi.org/10.1007/s00500-014-1258-0

    Article  Google Scholar 

  • Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65(6):386–408

    Article  Google Scholar 

  • Rumelheart DE, Hinton GE, Williams RJ (1986) Learning internal representation by error-propagation. In: Rumelhart DE, McClelland JL (eds) Parallel distribution processing: explorations in the microstructure of cognition. p 54–164

  • Seo Y, Kim S, Kisi O, Singh VP (2015) Daily water level forecasting using wavelet decomposition and artificial intelligence techniques. J Hydrol 520:224–243

    Article  Google Scholar 

  • Singh VK, Kumar P, Singh BP, Malik A (2016a) A comparative study of adaptive neuro fuzzy inference system (ANFIS) and multiple linear regression (MLR) for rainfall-runoff modellin. Int J Sci Natur 7(4):714–723

    Google Scholar 

  • Singh VK, Kumar P, Singh BP (2016b) Rainfall-runoff modeling using artificial neural networks (ANNs) and multiple linear regression (MLR) techniques. Ind J Eco 43(2):436–442

    Google Scholar 

  • Singh VK, Singh BP, Kisi O, Kushwaha DP (2018a) Spatial and multi-depth temporal soil temperature assessment by assimilating satellite imagery, artificial intelligence and regression-based models in arid area. Comput Electron Agric. https://doi.org/10.1016/j.compag.2018.04.019

  • Singh VK, Kumar D, Kashyap PK, Kisi O (2018b) Simulation of suspended sediment based on gamma test, heuristic, and regression-based techniques. Environ Earth Sci. https://doi.org/10.1007/s12665-018-7892-6

  • Sudheer KP, Gosain AK, Ramasastri KS (2002) A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol Process 16(6):1325–1330

    Article  Google Scholar 

  • Sudheer C, Maheswaran R, Panigrahi BK, Mathur S (2014) A hybrid SVM-PSO model for forecasting monthly streamflow. Neural Comput Applic 24:1381–1389

    Article  Google Scholar 

  • Takagi T, Sugeno M (1985) Fuzzy identification of systems and its application to modeling and control. IEEE Trans Syst Man Cybern 15:116–1332

    Article  Google Scholar 

  • Wei S, Song J, Khan NI (2012) Simulating and predicting river discharge time series using a wavelet-neural network hybrid modelling approach. Hydrol Process 26(2):281–296

    Article  Google Scholar 

  • Yang CT, Marsooli R, Aalami MT (2009) Evaluation of total load sedimenttransport formulas using ANN. Int J Sedim Res 24:274–286

    Article  Google Scholar 

  • Yaseen ZM et al (2016) RBFNN versus FFNN for daily river flow forecasting at Johor River, Malaysia. Neural Comput Applic 27(6):1533–1542

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Kumar Singh.

Ethics declarations

Conflict of Interest

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kumar, P. & Singh, V.K. Evaluating Different Machine Learning Models for Runoff and Suspended Sediment Simulation. Water Resour Manage 33, 1217–1231 (2019). https://doi.org/10.1007/s11269-018-2178-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-018-2178-z

Keywords

Navigation