Skip to main content

Comparison Between Robust and Stochastic Optimisation for Long-term Reservoir Management Under Uncertainty

Abstract

Long-term reservoir management often uses bounds on the reservoir level, between which the operator can work. However, these bounds are not always kept up-to-date with the latest knowledge about the reservoir drainage area, and thus become obsolete. The main difficulty with bounds computation is to correctly take into account the high uncertainty about the inflows to the reservoir. In this article, we propose a methodology to derive minimum bounds while providing formal guarantees about the quality of the obtained solutions. The uncertainty is embedded using either stochastic or robust programming in a model-predictive-control framework. We compare the two paradigms to the existing solution for a case study and find that the obtained solutions vary substantially. By combining the stochastic and the robust approaches, we also assign a confidence level to the solutions obtained by stochastic programming. The proposed methodology is found to be both efficient and easy to implement. It relies on sound mathematical principles, ensuring that a global optimum is reached in all cases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    https://github.com/dourouc05/ReservoirManagement.jl

References

  1. Abrahart RJ, See L (1998) Neural network vs. ARMA modelling: constructing benchmark case studies of river flow prediction. In: Proceedings of the 3rd international conference on geoComputation, Bristol. http://www.geocomputation.org/1998/05/gc_05.htm

  2. Adam N, Erpicum S, Archambeau P, Pirotton M, Dewals B (2014) Stochastic modelling of reservoir sedimentation in a Semi-Arid watershed. Water Resour Manag 29(3):785–800. https://doi.org/10.1007/s11269-014-0843-4 https://doi.org/10.1007/s11269-014-0843-4

    Article  Google Scholar 

  3. Ahmad A, El-Shafie A, Razali SFM, Mohamad ZS (2014) Reservoir optimization in water resources: a review. Water Resour Manag 28(11):3391–3405. https://doi.org/10.1007/s11269-014-0700-5

    Article  Google Scholar 

  4. Ahmadi Najl A, Haghighi A, Vali Samani HM (2016) Simultaneous optimization of operating rules and rule curves for multireservoir systems using a self-adaptive simulation-GA model. J Water Resour Plan Manag 142(10):4016,041

    Article  Google Scholar 

  5. Ahmadianfar I, Adib A, Taghian M (2017) Optimization of multi-reservoir operation with a new hedging rule: application of fuzzy set theory and NSGA-II. Appl Water Sci 7(6):3075–3086

    Article  Google Scholar 

  6. Akbari-Alashti H, Haddad OB, Mariño MA (2015) Application of fixed length gene genetic programming (FLGGP) in hydropower reservoir operation. Water Resour Manag 29(9):3357–3370

    Article  Google Scholar 

  7. Arunkumar R, Jothiprakash V (2012) Optimal reservoir operation for hydropower generation using non-linear programming model. Journal of The Institution of Engineers (India): Series A 93(2):111–120. https://doi.org/10.1007/s40030-012-0013-8

    Article  Google Scholar 

  8. Bashiri-Atrabi H, Qaderi K, Rheinheimer DE, Sharifi E (2015) Application of harmony search algorithm to reservoir operation optimization. Water Resour Manag 29(15):5729–5748. https://doi.org/10.1007/s11269-015-1143-3 https://doi.org/10.1007/s11269-015-1143-3

    Article  Google Scholar 

  9. Becker BPJ, Schruff T, Schwanenberg D (2014) Modellierung von reaktiver Steuerung und model predictive control. In: 37. Dresdner Wasserbaukolloquium 2014. https://izw.baw.de/publikationen/dresdner-wasserbauliche-mitteilungen/0/18_Heft_50_Modellierung_reaktive_Steuerung.pdf

  10. Ben-Tal A, Nemirovski A (2002) Robust optimization: methodology and applications. Math Program 92(3):453–480

    Article  Google Scholar 

  11. Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University Press, Princeton

    Book  Google Scholar 

  12. Bezanson J, Edelman A, Karpinski S, Shah VB (2017) Julia: a fresh approach to numerical computing. SIAM Review 59(1):65–98. https://doi.org/10.1137/141000671. http://julialang.org/publications/julia-fresh-approach-BEKS.pdf,

    Article  Google Scholar 

  13. Bieri M, Schleiss AJ (2013) Analysis of flood-reduction capacity of hydropower schemes in an Alpine catchment area by semidistributed conceptual modelling. J Flood Risk Manage 6(3):169–185. https://doi.org/10.1111/j.1753-318X.2012.01171.x

    Article  Google Scholar 

  14. Birge JR, Louveaux F (2011) Introduction to Stochastic Programming, 2nd edn. Springer, New York. http://www.springer.com/mathematics/applications/book/978-1-4614-0236-7. https://doi.org/10.1007/978-1-4614-0237-4

    Book  Google Scholar 

  15. Camnasio E, Becciu G (2011) Evaluation of the feasibility of irrigation storage in a flood detention pond in an agricultural catchment in northern italy. Water Resour Manag 25(5):1489–1508. https://doi.org/10.1007/s11269-010-9756-z

    Article  Google Scholar 

  16. Castelletti A, Pianosi F, Soncini-Sessa R (2008) Water reservoir control under economic, social and environmental constraints. Automatica 44 (6):1595–1607. https://doi.org/10.1016/j.automatica.2008.03.003. http://www.sciencedirect.com/science/article/pii/S0005109808001271

    Article  Google Scholar 

  17. Celeste AB, Billib M (2009) Evaluation of stochastic reservoir operation optimization models. Adv Water Resour 32(9):1429–1443. https://doi.org/10.1016/j.advwatres.2009.06.008. http://www.sciencedirect.com/science/article/pii/S0309170809001006

    Article  Google Scholar 

  18. Chang FJ, Chen L, Chang LC (2005) Optimizing the reservoir operating rule curves by genetic algorithms. Hydrol Process 19 (11):2277–2289. https://doi.org/10.1002/hyp.5674

    Article  Google Scholar 

  19. Chaves P, Kojiri T (2007) Stochastic fuzzy neural network: case study of optimal reservoir operation. J Water Resour Plan Manag 133(6):509–518

    Article  Google Scholar 

  20. Chen HW, Chang NB (2010) Using fuzzy operators to address the complexity in decision making of water resources redistribution in two neighboring river basins. Adv Water Resour 33(6):652–666

    Article  Google Scholar 

  21. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297. https://doi.org/10.1007/BF00994018

    Google Scholar 

  22. Dunning I, Huchette J, Lubin M (2017) JuMP: a modeling language for mathematical optimization. SIAM Rev 59(2):295–320. https://doi.org/10.1137/15M1020575

    Article  Google Scholar 

  23. Finch J, Calver A (2008) Methods for the quantification of evaporation from lakes. Tech. rep., http://nora.nerc.ac.uk/14359/1/wmoevap_271008.pdf

  24. Jordan FM, Boillat JL, Schleiss AJ (2012) Optimization of the flood protection effect of a hydropower multi-reservoir system. International journal of river basin management 10(1):65–72

    Article  Google Scholar 

  25. Klopstra D, van Eck NV (1999) Methodiek voor vaststelling van de vorm van de maatgevende afvoergolf van de Maas bij Borgharen. HKV Lijn in Water in opdracht van WL—Delft Hydraulics en Rijkswaterstaat RIZA

  26. Kwon WH, Han SH (2005) Receding horizon control: model predictive control for state models, 1st edn. Springer, London. http://www.springer.com/us/book/9781846280245

    Google Scholar 

  27. Labadie JW (2004) Optimal operation of multireservoir systems: State-of-the-Art review. J Water Resour Plan Manag 130(2):93–111. https://doi.org/10.1061/(ASCE)0733-9496(2004)130:2(93)

    Article  Google Scholar 

  28. Maier HR, Kapelan Z, Kasprzyk J, Kollat J, Matott LS, Cunha MC, Dandy GC, Gibbs MS, Keedwell EC, Marchi A, Ostfeld A, Savic D, Solomatine DP, Vrugt JA, Zecchin AC, Minsker BS, Barbour EJ, Kuczera G, Pasha F, Castelletti A, Giuliani M, Reed PM (2014) Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions. Environ Model Softw 62:271–299. https://doi.org/10.1016/j.envsoft.2014.09.013. http://www.sciencedirect.com/science/article/pii/S1364815214002679

    Article  Google Scholar 

  29. Nicklow JW, Mays LW (2000) Optimization of multiple reservoir networks for sedimentation control. J Hydraul Eng 126(4):232–242

    Article  Google Scholar 

  30. Pan L, Housh M, Liu P, Cai X, Chen X (2015) Robust stochastic optimization for reservoir operation. Water Resour Res 51(1):409–429

    Article  Google Scholar 

  31. Peng Y, Peng A, Zhang X, Zhou H, Zhang L, Wang W, Zhang Z (2017) Multi-core parallel particle swarm optimization for the operation of Inter-Basin water transfer-supply systems. Water Resour Manag 31(1):27–41

    Article  Google Scholar 

  32. Sabzi HZ, Humberson D, Abudu S, King JP (2016) Optimization of adaptive fuzzy logic controller using novel combined evolutionary algorithms, and its application in Diez Lagos flood controlling system, Southern New Mexico. Expert Syst Appl 43:154–164

    Article  Google Scholar 

  33. Schwanenberg D, Becker BPJ, Xu M (2015) The open real-time control (RTC)-Tools software framework for modeling RTC in water resources sytems. J Hydroinf 17(1):130 LP–148. http://jh.iwaponline.com/content/17/1/130.abstract

    Article  Google Scholar 

  34. Shapiro A, Dentcheva D (2014) Lectures on stochastic programming: modeling and theory, vol 16, 2nd edn. SIAM, Philadelphia

  35. Spierdijk L (2016) Confidence intervals for ARMA–GARCH value-at-risk: The case of heavy tails and skewness. Comput Stat Data Anal 100:545–559

    Article  Google Scholar 

  36. Spiliotis M, Mediero L, Garrote L (2016) Optimization of hedging rules for reservoir operation during droughts based on particle swarm optimization. Water Resour Manag 30(15):5759–5778

    Article  Google Scholar 

  37. Sulis A (2016) An optimisation model for reservoir operation. In: Proceedings of the institution of civil engineers-water management, Thomas Telford Ltd , pp 1–9

  38. Taghian M, Rosbjerg D, Haghighi A, Madsen H (2014) Optimization of Conventional Rule Curves Coupled with Hedging Rules for Reservoir Operation. J Water Resour Plan Manag 140(5):693–698. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000355

    Article  Google Scholar 

  39. Talsma J, Patzke S, Becker BPJ, Goorden N, Schwanenberg D, Prinsen G (2013) Application of model predictive control on water extractions in scarcity situations in the netherlands. Revista de Ingeniería Innova 6:1–10

    Google Scholar 

  40. Vanderbei RJ (2014) Linear programming, international series in operations research & management science, vol 196, 4th edn. Springer, Boston

  41. Yeh WWG (1985) Reservoir management and operations models: a State-of-the-Art review. Water Resour Res 21(12):1797–1818. https://doi.org/10.1029/WR021i012p01797

    Article  Google Scholar 

  42. Zhang Y, Jiang Z, Ji C, Sun P (2015) Contrastive analysis of three parallel modes in multi-dimensional dynamic programming and its application in cascade reservoirs operation. J Hydrol 529:Part:22–34. https://doi.org/10.1016/j.jhydrol.2015.07.017. http://www.sciencedirect.com/science/article/pii/S0022169415005144

    Article  Google Scholar 

  43. Zhao T, Zhao J, Lund J, Yang D (2014) Optimal hedging rules for reservoir flood operation from forecast uncertainties. Journal of Water Resources Planning and Management Preview(2011). https://doi.org/10.1061/(ASCE)WR.1943-5452.0000432

  44. Zhu X, Zhang C, Fu G, Li Y, Ding W (2017) Bi-Level optimization for determining operating strategies for Inter-Basin water Transfer-Supply reservoirs. Water Resour Manag 31(14):4415–4432. ISSN: 1573-1650. https://doi.org/10.1007/s11269-017-1756-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Service Public de Wallonie (SPW) for providing data on the case study. They also thank Sébastien Erpicum for his help with the revision of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thibaut Cuvelier.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 99.0 KB)

(PDF 61.8 KB)

(PDF 329 KB)

(PDF 2.38 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cuvelier, T., Archambeau, P., Dewals, B. et al. Comparison Between Robust and Stochastic Optimisation for Long-term Reservoir Management Under Uncertainty. Water Resour Manage 32, 1599–1614 (2018). https://doi.org/10.1007/s11269-017-1893-1

Download citation

Keywords

  • Long-term reservoir management
  • Rule curve
  • Stochastic optimisation
  • Robust optimisation