Skip to main content
Log in

Maximum Design Flow Estimates for Large Basins Using the Local Frequency Analysis (LFA) and the Most Probable Maximum Hydrograph (MPMH) Methods – a Critical Analysis

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Statistical and deterministic methods have been severely criticized regarding their ability to calculate peak flows. The recently proposed method denominated as Most Probable Maximum Hydrograph (MPMH), applicable to large hydrographic basins, promises to overcome the difficulties faced in the most traditional methods (statistical and deterministic). The method not only uses the peak flow as in the statistical methods, and not requires detail information about the physical and meteorological characteristics of the hydrographic basin as in the deterministic method. The MPMH method takes information from observed hydrographs as base time, maximum flow and its respective volume. Using simple linear regression equations or simple exponential distribution adjusted to mean hydrograph volumes, the MPMH method is used to calculate design hydrograph, based on observed hydrographs volumes and the respective return periods. This paper assesses the applicability of the MPMH method by evaluating the influence of data characteristics as size of data series, removal of outliers and lowest values of the flow series on the peak flow estimates. In this paper it is shown that the MPMH method has great potential for estimation of design flows when compared to traditional methods. Besides that, it is shown that the difficulty in the use the MPMH method lies in deciding the base time (duration of the direct runoff hydrograph) of the standard hydrograph for the basin, which proved to be a decisive factor to estimate the peak flow and hydrograph volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

B:

Biased

EV1:

Gumbel Distribution or Extreme Values type – I

EXP:

Exponential Distribution

GAM:

Gamma Distribution

GEV:

Generalised Distribution of Extreme Values

GLOG:

Generalised Logistic Distribution

GPAR:

Generalised Pareto Distribution

HPP:

Hydroelectric Power Plant

k*:

Relation between peak and mean flow observed (dimensionless)

LFA:

Local Frequency Analysis

LN2:

2 parameter Log-Normal Distribution

LN3:

3 parameter Log-Normal Distribution

LOG:

Logistic Distribution

LPIII:

Log-Pearson type III Distribution

MD:

Maximum Percent Differences (%)

ML:

Maximum Likelihood Estimation

MM:

Moment Method

MPMH:

Most Probable Maximum Hydrograph

PIII:

Pearson type III Distribution

PM:

Probability Weighted Moments

Q10,000 :

Daily Maximum estimated flow for return period of 10,000 years [L3T−1]

QB :

Base flow hydrograph [L3T−1]

Qmax :

Maximum flow of naturalised or observed data series [L3T−1]

QP :

Daily peak flows of design considering the MPMH method [L3T−1]

QProject :

Design flow or design flood [L3T−1]

QTB :

Mean flow with TB duration [L3T−1]

s.e.d.:

Simple Exponential Distribution

s.l.r.:

Simple Linear Regression

SEM:

Standard Error of the Mean [L3T−1]

SSRH:

Subsecretaría de Recursos Hídricos de la Nación Argentina in Spanish

T:

Return period (years)

TB:

Base time of Design Hydrograph (days)

UB:

Unbiased

W:

Weibull Distribution

References

  • Braga BPF Jr, Garcia LAV (1997) Análise de freqüência conjugada (in Portuguese). Rev Bras Recur Hídr 2:21–44. doi:10.21168/rbrh.v2n2.p21-44

    Google Scholar 

  • Cavalcanti DLO (2014) Estudo comparativo de métodos de estimação de vazões máximas de projeto para grandes bacias hidrográficas. Dissertation, University of São Paulo (in Portuguese)

  • CNEC/ESIN/PROA (2010) Relatório Final dos Estudos de Inventário Hidroelétrico da Bacia do Rio Uruguai no Trecho Compartilhado entre Argentina e Brasil. Consortium CNEC/ESIN/PROA for EBISA and ELETROBRÁS, Ministério de Minas e Energia (in Portuguese)

  • Coelho Filho JAP, Naghettini M, Pinto EJAP (2011) Curvas envoltórias probabilísticas para a estimação de cheias de projeto (in Portuguese). Rev Bras Recur Hídr 16:83–96. doi:10.21168/rbrh.v16n1.p83-96

    Google Scholar 

  • Conte AE (2012) Aspectos de um Hidrograma Máximo Mais Provável. CreateSpace, São Paulo (in Portuguese)

  • Cox DR, Isham VS, Northrop PJ (2002) Floods: some probabilistic and statistical approaches. Philos Transact A Math Phys Eng Sci 360:1389–1408. doi:10.1098/rsta.2002.1006

    Article  Google Scholar 

  • Cunnane C (1978) Unbiased plotting positions - a review. J Hydrol 37:205–222

    Article  Google Scholar 

  • Detzel DHM, Bessa MR, Vallejos CAV et al (2011) Estacionariedade das Afluências às Usinas Hidrelétricas Brasileiras (in Portuguese). Rev Bras Recur Hídr 16:95–111. doi:10.21168/rbrh.v16n3.p95-111

    Google Scholar 

  • Domínguez M. R, Arganis J. ML (2012) Validation of methods to estimate design discharge flow rates for dam spillways with large regulating capacity. Hydrol Sci J 57:460–478. doi:10.1080/02626667.2012.665993

    Article  Google Scholar 

  • Fernandes W, Naghettini M, Loschi R (2010) A Bayesian approach for estimating extreme flood probabilities with upper-bounded distribution functions. Stochastic Environ Res Risk Assess 24:1127–1143. doi:10.1007/s00477-010-0365-4

    Article  Google Scholar 

  • Fuentes-Mariles ÓA, Domínguez-Mora R, Arganis-Juárez ML et al (2015) Estimate of design hydrographs for the Angostura Dam, Sonora, using statistical and spectral methods. Water Resour Manag 29:4021–4043. doi:10.1007/s11269-015-1043-6

    Article  Google Scholar 

  • Garcia LAV (1996) Método Conjugado - Combinação dos Métodos Estatístico e Determinístico para a Determinação de Valores Máximos de Variáveis Hidrológicas. PhD Thesis, University of São Paulo (in Portuguese)

  • Grubbs FE (1950) Sample criteria for testing outlying observations. Ann Math Stat 21:27–58. doi:10.1214/aoms/1177729885

    Article  Google Scholar 

  • Grubbs FE (1969) Procedures for detecting outlying observations in samples. Technometrics 11:1. doi:10.2307/1266761

    Article  Google Scholar 

  • Grubbs FE, Beck G (1972) Extension of sample sizes and percentage points for significance tests of outlying observations. Technometrics 14:847. doi:10.2307/1267134

    Article  Google Scholar 

  • Ishizaka A, Nemery P (2011) Selecting the best statistical distribution with PROMETHEE and GAIA. Comput Ind Eng 61:958–969. doi:10.1016/j.cie.2011.06.008

    Article  Google Scholar 

  • Lima FAL (2005) Análise Bayesiana de Frequência de Vazões Máximas Anuais com Informações Históricas: Aplicação a Bacia do Rio São Francisco em São Francisco. Dissertation, Federal University of Minas Gerais (in Portuguese)

  • Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18:50–60. doi:10.1214/aoms/1177730491

    Article  Google Scholar 

  • McCuen RH 1941 (1989) Hydrologic analysis and design. Prentice-Hall, Englewood Cliffs

  • MMA (2005) Avaliação ambiental integrada dos aproveitamentos hidrelétricos na bacia do rio Uruguai, Ministério do Meio Ambiente (in Portuguese)

  • Naghettini M, Pinto EJA (2007) Hidrologia Estatística (in Portuguese). CPRM – Serviço Geológico do Brasil, Belo Horizonte

  • Nathan R, Ball J (2015) Revised guidance on selection of approaches to flood estimation. In: 36th hydrology and water resources symposium, HWRS. Hobart, pp 173–183

  • ONS (2012) Série de vazões naturais médias diárias, Operador Nacional do Sistema Elétrico (in Portuguese). http://www.ons.org.br/operacao/vazoes_naturais.aspx. Accessed 26 Oct 2012

  • Pettitt AN (1979) A non-parametric approach to the change-point problem. Appl Stat 28:126. doi:10.2307/2346729

    Article  Google Scholar 

  • Queiroz MMF, Chaudhry FH (2006) Análise de eventos hidrológicos extremos, usando-se a distribuição GEV e momentos LH (in Portuguese). Rev Bras Eng Agrícola e Ambient 10:381–389. doi:10.1590/S1415-43662006000200020

    Article  Google Scholar 

  • Rao AR, Hamed KH (1999) Flood frequency analysis. CRC Press

  • Rao AR, Hamed KH (2003) Freq082003.exe: Flood Frequency Analysis

  • Smithers J (2012) Methods for design flood estimation in South Africa. Water SA 38:633–646. doi:10.4314/wsa.v38i4.19

    Article  Google Scholar 

  • Souza SA de (2006) Avaliação das metodologias para determinação de valores máximos de variáveis hidrológicas: aplicação do método conjugado. Dissertation, University of São Paulo (in Portuguese)

  • Srikanthan R, McMahon T, Irish J (1983) Time series analyses of annual flows of Australian streams. J Hydrol 66:213–226. doi:10.1016/0022-1694(83)90186-5

    Article  Google Scholar 

  • SSRH (2013) Time series - Base de Datos Hidrológica Integrada - BDHI, Subsecretaría de Recursos Hídricos de la Nación Argentina (in Spanish)

  • Stedinger JR, Vogel RM, Foufoula-Georgiou E (1993) Frequency analysis of extreme events. Handb Hydrol 18:1

    Google Scholar 

  • USDA (1972) Design Hydrographs. In: National Engineering Handbook: hydrology. United States Department of Agriculture, pp 1–115

  • USDA (2006) Design Hydrographs. In: Part 630 Hydrology - National Engineering Handbook. United States Department of Agriculture, Natural Resources Conservation Service, Washington, pp 1–13

  • USDA (2012) Selected Statistical Methods. In: National Engineering Handbook: hydrology. United States Department of Agriculture, p 101

  • Villarini G, Smith JA, Baeck ML, Krajewski WF (2011a) Examining flood frequency distributions in the midwest U.S. J Am Water Resour Assoc 47:447–463. doi:10.1111/j.1752-1688.2011.00540.x

    Article  Google Scholar 

  • Villarini G, Smith JA, Serinaldi F, Ntelekos AA (2011b) Analyses of seasonal and annual maximum daily discharge records for central Europe. J Hydrol 399:299–312. doi:10.1016/j.jhydrol.2011.01.007

    Article  Google Scholar 

  • Zeimetz F, García-Hernández J, Schleiss AJ (2015) Extreme flood estimations on a small alpine catchment in Switzerland, the case study of Limmerboden. Proc Int Assoc Hydrol Sci 370:147–152. doi:10.5194/piahs-370-147-2015

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of CNPq (the National Counsel of Technological and Scientific Development in Brazil) for the development of this study through scholarships granted to them. The authors would like to thank also Professor Fazal Hussain Chaudhry and anonymous reviewers for their helpful comments that permitted improvements to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daysy Lira Oliveira Cavalcanti.

Additional information

Dimensions used correspond to International System of Units (S.I.)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavalcanti, D.L.O., Reis, L.F.R. Maximum Design Flow Estimates for Large Basins Using the Local Frequency Analysis (LFA) and the Most Probable Maximum Hydrograph (MPMH) Methods – a Critical Analysis. Water Resour Manage 31, 127–141 (2017). https://doi.org/10.1007/s11269-016-1514-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-016-1514-4

Keywords

Navigation