Skip to main content

Advertisement

Log in

Daily Reference Evapotranspiration for Hyper-Arid to Moist Sub-Humid Climates in Inner Mongolia, China: II. Trends of ETo and Weather Variables and Related Spatial Patterns

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

This study focuses on assessing trends of reference evapotranspiration (ETo) considering aridity. Weather data sets of 54–62 years of Inner Mongolia, a Chinese Province where climate varies from hyper-arid in the West to wet sub-humid in the East, were used. Trends were analyzed for ETo computed with the FAO Penman-Monteith method (PM-ETo) using full data sets of maximum and minimum temperature (Tmax and Tmin), sunshine duration (SD) used to compute net radiation, relative humidity (RH) and wind speed (WS). Trends were also assessed for ETo computed with the Hargreaves-Samani temperature eq. (ETo HS) and the Penman-Monteith equation with temperature estimates of solar radiation and actual vapour pressure (ETo PMT). In addition, trends relative to Tmax, Tmin, SD, RH and WS were assessed. Trends for PM-ETo show to vary with aridity, with decreasing trends in the areas marked by aridity in the West and increased trends in less arid and sub-humid areas in the East. The detected trends are well explained by the trends in weather variables which consist of large increasing trends of Tmax and Tmin and of decreasing trends for SD, RH and WS. Therefore, negative trends of ETo occur where impacts of increases in temperature and decreases in RH are smaller than impacts of declining SD and WS; otherwise, when warming influences are larger it results a positive trend for ETo. Trends were coherent when considering seasonality influences. Contrarily, results for the temperature methods, ETo PMT and ETo HS, always identified increased trends for ETo due to warming effects. These results show that it is inappropriate to assess ETo trends when using simplified temperature methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abtew W, Obeysekera J, Iricanin N (2011) Pan evaporation and potential evapotranspiration trends in South Florida. Hydrol Process 25:958–969

    Article  Google Scholar 

  • Aitken AC (1936) IV. On least squares and linear combination of observations. P Roy Soc Edinb 55:42–48

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56. FAO, Rome, p. 300p

    Google Scholar 

  • Bandyopadhyay A, Bhadra A, Raghuwanshi NS, Singh R (2009) Temporal trends in estimates of reference evapotranspiration over India. J Hydrol Eng 14:508–515

    Article  Google Scholar 

  • Barbosa SM (2011) Testing for deterministic trends in global sea surface temperature. J Clim 24:2516–2522

    Article  Google Scholar 

  • Calanca P, Roesch A, Jasper K, Wild M (2006) Global warming and the summertime evapotranspiration regime of the alpine region. Clim Chang 79:65–78

    Article  Google Scholar 

  • Chaouche K, Neppel L, Dieulin C, Pujol N, Ladouche B, Martin E, Salas D, Caballero Y (2010) Analyses of precipitation, temperature and evapotranspiration in a French Mediterranean region in the context of climate change. Compt Rendus Geosci 42:234–243

    Article  Google Scholar 

  • Che HZ, Sh GY, Zhang XY, Arimoto R, Zhao JQ, Xu L, Wang B, Chen ZH (2005) Analysis of 40 years of solar radiation data from China, 1961–2000. Geophys Res Lett 32:L06803. doi:10.1029/2004GL022322

    Article  Google Scholar 

  • Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) STL: a seasonal-trend decomposition procedure based on loess. J Off Stat 6:3–73

    Google Scholar 

  • Cohen S, Ianetz A, Stanhill G (2002) Evaporative climate changes at bet Dagan, Israel, 1964–1998. Agric Forest Meteorol 111:83–91

    Article  Google Scholar 

  • Cong ZT, Yang DW, Ni GH (2009) Does evaporation paradox exist in China? Hydrol Earth Syst Sci 13:357–366

    Article  Google Scholar 

  • Croitoru AE, Piticar A, Dragotă CS, Burada DC (2013) Recent changes in reference evapotranspiration in Romania. Glob Planet Chang 111:127–132

    Article  Google Scholar 

  • Dai A (2006) Recent climatology, variability, and trends in global surface humidity. J Clim 19:3589–3606

    Article  Google Scholar 

  • Dono G, Cortignani R, Doro L, Giraldo L, Ledda L, Pasqui M, Roggero PP (2013) An integrated assessment of the impacts of changing climate variability on agricultural productivity and profitability in an irrigated Mediterranean catchment. Water Resour Manag 27:3607–3622

    Article  Google Scholar 

  • Donohue RJ, McVicar TR, Roderick ML (2010) Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. J Hydrol 386:186–197

    Article  Google Scholar 

  • Espadafor M, Lorite IJ, Gavilán P, Berengena J (2011) An analysis of the tendency of reference evapotranspiration estimates and other climate variables during the last 45 years in southern Spain. Agric Water Manag 98:1045–1061

    Article  Google Scholar 

  • Fatichi S, Barbosa SM, Caporali E, ME S (2009) Deterministic versus stochastic trends: detection and challenges. Geophys Res-Atmos (1984–2012) 114:D18. doi:10.1029/2009JD011960

    Google Scholar 

  • Gao G, Chen D, Ren G, Chen Y, Liao Y (2006) Spatial and temporal variations and controlling factors of potential evapotranspiration in China: 1956–2000. Geophys Res-Atmos 16:3–12

    Google Scholar 

  • Gao G, Chen D, Xu CY, Simelton E (2007) Trend of estimated actual evapotranspiration over China during 1960–2002. Geophys Res-Atmos 112:D11120. doi:10.1029/2006JD008010

    Article  Google Scholar 

  • Guo H, Xu M, Hu Q (2011) Changes in near-surface wind speed in China: 1969–2005. Int J Climatol 31:349–358

    Article  Google Scholar 

  • rHamed KH, Rao AR (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204:182–196

  • Han S, Xu D, Wang S (2012) Decreasing potential evaporation trends in China from 1956 to 2005: accelerated in regions with significant agricultural influence? Agric Forest Meteorol 154-155:44–56

    Article  Google Scholar 

  • Huo Z, Dai X, Feng S, Kang S, Huang G (2013) Effect of climate change on reference evapotranspiration and aridity index in arid region of China. J Hydrol 492:24–34

    Article  Google Scholar 

  • IPCC, (2014): Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, 151 pp.

  • Irmak S, Kabenge I, Skaggs KE, Mutiibwa D (2012) Trend and magnitude of changes in climate variables and reference evapotranspiration over 116-yr period in the Platte River basin, Central Nebraska–USA. J Hydrol 420–421:228–244

    Article  Google Scholar 

  • Jhajharia D, Dinpashoh Y, Kahya E, Singh VP, Fakheri-Fard A (2012) Trends in reference evapotranspiration in the humid region of Northeast India. Hydrol Process 26:421–435

    Article  Google Scholar 

  • Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen J, de Jeu R, Dolman AJ, Eugester W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law BE, Montagnani L, Mu Q, Meuller B, Oleson K, Papale D, Richardson AD, Roupsard O (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 46:951–954

    Article  Google Scholar 

  • Kendall MG (1955) Rank correlation methods. Griffin, London

    Google Scholar 

  • Kousari MR, Zarch MAA, Ahani H, Hakimelahi H (2013) A survey of temporal and spatial reference crop evapotranspiration trends in Iran from 1960 to 2005. Clim Chang 120:277–298

    Article  Google Scholar 

  • Kwiatkowski D, Phillips PC, Schmidt P, Shin Y (1992) Testing the null hypothesis of stationarity against the alternative of a unit root: how sure are we that economic time series have a unit root? J Econometrics 54:159–178

    Article  Google Scholar 

  • Li Z, Zheng FL, Liu WZ (2012) Spatiotemporal characteristics of reference evapotranspiration during 1961–2009 and its projected changes during 2011–2099 on the loess plateau of China. Agric Forest Meteorol 154-155:147–155

    Article  Google Scholar 

  • Liang F, Xia XA (2005) Long-term trends in solar radiation and the associated climatic factors over China for 1961-2000. Ann Geophys 23:2425–2432

    Article  Google Scholar 

  • Liang L, Li L, Liu Q (2010) Temporal variation of reference evapotranspiration during 1961–2005 in the Taoer River basin of Northeast China. Agric Forest Meteorol 150:298–306

    Article  Google Scholar 

  • Liu Q, McVicar TR (2012) Assessing climate change induced modification of penman potential evaporation and runoff sensitivity in a large water-limited basin. J Hydrol 464–465:352–362

    Article  Google Scholar 

  • Liu X, Zhang D (2013) Trend analysis of reference evapotranspiration in Northwest China: the roles of changing wind speed and surface air temperature. Hydrol Process 27:3941–3948

    Article  Google Scholar 

  • Liu Q, Yang Z, Cui B, Sun T (2010) The temporal trends of reference evapotranspiration and its sensitivity to key meteorological variables in the Yellow River basin, China. Hydrol Process 24:2171–2181

    Article  Google Scholar 

  • Liu C, Zhang D, Liu X, Zhao C (2012) Spatial and temporal change in the potential evapotranspiration sensitivity to meteorological factors in China (1960–2007). J Geogr Sci 22:3–14

    Article  Google Scholar 

  • Liu Y, Zhuang Q, Chen M, Pan Z, Tchebakova N, Sokolov A, Kicklighter D, Melillo J, Sirin A, Zhou G, He Y, Chen J, Bowling L, Miralles D, Parfenova E (2013) Response of evapotranspiration and water availability to changing climate and land cover on the Mongolian plateau during the twenty-first century. Glob Planet Chang 108:85–99

    Article  Google Scholar 

  • Liu Y, Zhuang Q, Pan Z, Miralles D, Tchebakova N, Kicklighter D, Chen J, Sirin A, He Y, Zhou G, Melillo J (2014) Response of evapotranspiration and water availability to the changing climate in northern Eurasia. Clim Chang 126:413–427

    Article  Google Scholar 

  • McVicar TR, Roderick ML, Donohue RJ, Li LT, Van Niel TG, Thomas A, Grieser J, Jhajharia D, Himri Y, Mahowald NM, Mescherskaya AV, Kruger AC, Rehman S, Dinpashoh Y (2012) Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation. J Hydrol 416–417:182–205

    Article  Google Scholar 

  • Moratiel R, Snyder RL, Duran JM, Tarquis AM (2011) Trends in climatic variables and future reference evapotranspiration in Duero Valley (Spain). Nat Hazards Earth Syst Sci 11:1795–1805

    Article  Google Scholar 

  • Norris JR, Wild M (2009) Trends in aerosol radiative effects over China and Japan inferred from observed cloud cover, solar “dimming,” and solar “brightening”. J Geophys Res 114:D00D15

    Article  Google Scholar 

  • Pereira LS, Allen RG, Smith M, Raes D (2015) Crop evapotranspiration estimation with FAO56: past and future. Agric Water Manag 147:4–20

    Article  Google Scholar 

  • Peterson TC, Golubev VS, Groisman PY (1995) Evaporation losing its strength. Nature 377:687–688

    Article  Google Scholar 

  • Phillips PC, Perron P (1988) Testing for a unit root in time series regression. Biometrika 75:335–346

    Article  Google Scholar 

  • Qian Y, Kaiser DP, Leung LR, Xu M (2006) More frequent cloud-free sky and less surface solar radiation in China from 1955 to 2000. Geophys Res Lett 33:L01812. doi:10.1029/2005GL024586

    Google Scholar 

  • Raziei T, Pereira LS (2013) Estimation of ETo with Hargreaves–Samani and FAO-PM temperature methods for a wide range of climates in Iran. Agric Water Manag 121:1–18

    Article  Google Scholar 

  • Ren XD, Qu ZY, Martins DS, Paredes P, Pereira LS (2016) Daily reference evapotranspiration for hyper-arid to moist sub-humid climates in Inner Mongolia, China: I Assessing temperature methods and spatial variability Water Resour Manage. doi:10.1007/s11269-016-1384-9

  • Rodriguez Díaz JA, Weatherhead EK, Knox JW, Camacho E (2007) Climate change impacts on irrigation water requirements in the Guadalquivir river basin in Spain. Reg Environ Chang 7:149–159

    Article  Google Scholar 

  • Saadi S, Todorovic M, Tanasijevic L, Pereira LS, Pizzigalli C, Lionello P (2015) Climate change and Mediterranean agriculture: impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield. Agric Water Manag 147:103–115

    Article  Google Scholar 

  • Santander Meteorology Group (2012). fume: FUME package. R package version 1.0. http://CRAN.R-project.org/package=fume

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall's tau. J Am Stat Assoc 63:1379–1389

    Article  Google Scholar 

  • Shadmani M, Marofi S, Roknian M (2012) Trend analysis in reference evapotranspiration using Mann-Kendall and Spearman’s rho tests in arid regions of Iran. Water Resour Manag 26:211–224

    Article  Google Scholar 

  • Shi G-Y, Hayasaka T, Ohmura A, Chen Z-H, Wang B, Zhao J-Q, Che H-Z, Xu L (2008) Data quality assessment and the long-term trend of ground solar radiation in China. J ApplMeteorolClimatol 47:1006–1016

    Google Scholar 

  • Song ZW, Zhang HL, Snyder RL, Anderson FE, Chen F (2010) Distribution and trends in reference evapotranspiration in the North China plain. J Irrig Drain Eng 136:240–247

    Article  Google Scholar 

  • Streets DG, Wu Y, Chin M (2006) Two-decadal aerosol trends as a likely explanation of the global dimming/brightening transition. Geophys Res Lett 33:L15806. doi:10.1029/2006GL026471

    Article  Google Scholar 

  • Tang B, Tong L, Kang S, Zhang L (2011a) Impacts of climate variability on reference evapotranspiration over 58 years in the Haihe river basin of North China. Agric Water Manag 98:1660–1670

    Article  Google Scholar 

  • Tang W-J, Yang K, Qin J, Cheng CCK, He J (2011b) Solar radiation trend across China in recent decades: a revisit with quality-controlled data. Atmos Chem Phys 11:393–406

    Article  Google Scholar 

  • Terink W, Immerzeel WW, Droogers P (2013) Climate change projections of precipitation and reference evapotranspiration for the Middle East and northern Africa until 2050. Int J Climatol 33:3055–3072

    Article  Google Scholar 

  • Thomas A (2000) Spatial and temporal characteristics of potential evapotranspiration trends over China. Int J Climatol 20:381–396

    Article  Google Scholar 

  • Thomas A (2008) Development and properties of 0.25-degree gridded evapotranspiration data fields of China for hydrological studies. J Hydrol 358:145–158

    Article  Google Scholar 

  • Todorovic M, Karic B, Pereira LS (2013) Reference evapotranspiration estimate with limited weather data across a range of Mediterranean climates. J Hydrol 481:166–176

    Article  Google Scholar 

  • Trapletti A, Hornik K (2015) Tseries: time series analysis and computational finance. R package version 0.10–34

  • Vicente-Serrano SM, Azorin-Molina C, Sanchez-Lorenzo A, Revuelto J, López-Moreno JI, Morán-Tejeda E, Espejo F (2014a) Reference evapotranspiration variability and trends in Spain, 1961–2011. Glob Planet Chang 121:26–40

    Article  Google Scholar 

  • Vicente-Serrano SM, Azorin-Molina C, Sanchez-Lorenzo A, Morán-Tejeda E, Lorenzo-Lacruz J, Revuelto J, López-Moreno JI, Espejo F (2014b) Temporal evolution of surface humidity in Spain: recent trends and possible physical mechanisms. Clim Dyn 42:2655–2674

    Article  Google Scholar 

  • Wang JXL, Gaffen DJ (2001) Late-twentieth-century climatology and trends of surface humidity and temperature in China. J Clim 14:2833–2845

    Article  Google Scholar 

  • Wang Y, Jiang T, Bothe O, Fraedrich K (2007) Changes of pan evaporation and reference evapotranspiration in the Yangtze River basin. Theor Appl Climatol 90:13–23

    Article  Google Scholar 

  • Wang W, Shao Q, Peng S, Xing W, Yang T, Luo Y, Yong B, Xu J (2012) Reference evapotranspiration change and the causes across the Yellow River basin during 1957–2008 and their spatial and seasonal differences. Water Resour Res 48:W05530

    Google Scholar 

  • WMO (2015): Record Global Temperatures and high impact weather and climate extremes https://www.wmo.int/media/content/record-global-temperatures-and-high-impact-weather-and-climate-extremes. Accessed 1 November 2015

  • Xing W, Wang W, Shao Q, Peng S, Yu Z, Yong B, Taylor J (2014) Changes of reference evapotranspiration in the Haihe River basin: present observations and future projection from climatic variables through multi-model ensemble. Glob Planet Chang 115:1–15

    Article  Google Scholar 

  • Xiong W, Holman I, Lin E, Conway D, Jiang J, Xu Y, Li Y (2010) Climate change, water availability and future cereal production in China. Agric Ecosyst Environ 135:58–69

    Article  Google Scholar 

  • Xu CY, Gong L, Jiang T, Chen D, Singh VP (2006) Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. J Hydrol 327:81–93

    Article  Google Scholar 

  • Xu YP, Pan S, Fu G, Tian Y, Zhang X (2014) Future potential evapotranspiration changes and contribution analysis in Zhejiang Province. East China, J Geophys Res-Atmos 118:2174–2192

    Article  Google Scholar 

  • Yang Z, Liu Q, Cui B (2011) Spatial distribution and temporal variation of reference evapotranspiration during 1961–2006 in the Yellow River basin. China, HydrolSci J 56:1015–1026

    Google Scholar 

  • Yin Y, Wu S, Chen G, Dai E (2010) Attribution analyses of potential evapotranspiration changes in China since the 1960s. Theor Appl Climatol 101:19–28

    Article  Google Scholar 

  • Yue S, Wang C (2004) The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour Manag 18:201–218

    Article  Google Scholar 

  • Zhang Q, Xu CY, Chen YD, Ren L (2011a) Comparison of evapotranspiration variations between the Yellow River and Pearl River basin, China. Stoch Environ Res Risk Assess 25:139–150

    Article  Google Scholar 

  • Zhang Q, Xu CY, Chen X (2011b) Reference evapotranspiration changes in China: natural processes or human influences? Theor Appl Climatol 103:479–488

    Article  Google Scholar 

  • Zuo D, Xu Z, Yang H, Liu X (2012) Spatiotemporal variations and abrupt changes of potential evapotranspiration and its sensitivity to key meteorological variables in the Wei River basin, China. Hydrol Process 26:1149–1160

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by the Project of National Natural Science Fund (NO: 51469020), the Ministry of Education Innovation Team Development Plan (NO: IRT13069), and the Project of National Natural Science Fund (NO: 51139002). The authors thank the Chinese Meteorological Data Sharing Service Network for providing the meteorological data used in this study. This work was partially supported by the Portuguese Foundation for Science and Technology through the project PTDC/GEO-MET/3476/2012. The second author acknowledges the PhD research grant SFRH/BD/92880/2013 and the fourth author acknowledges the awarded Post-Doc research grant (SFRH/BPD/102478/2014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongyi Qu or Luis S. Pereira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Martins, D.S., Qu, Z. et al. Daily Reference Evapotranspiration for Hyper-Arid to Moist Sub-Humid Climates in Inner Mongolia, China: II. Trends of ETo and Weather Variables and Related Spatial Patterns. Water Resour Manage 30, 3793–3814 (2016). https://doi.org/10.1007/s11269-016-1385-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-016-1385-8

Keywords

Navigation