Skip to main content


Log in

Multiobjective Genetic Optimization Approach to Identify Pipe Segment Replacements and Inline Storages to Reduce Sanitary Sewer Overflows

  • Published:
Water Resources Management Aims and scope Submit manuscript


Sanitary sewer overflows (SSOs) is the unintentional discharge of untreated sewage from the sanitary sewer system and pose serious risk to public health and to the environment. Rehabilitation plans to reduce SSOs involve increasing conveyance capacity and shaving peak flow using detention storages. Identifying the best location for rehabilitating the sanitary sewer network is a difficult task because of the great length of sanitary sewer systems. This study utilized single and multiobjective genetic algorithms (GAs) to design rehabilitation strategies for SSOs reduction in an existing sewer network. The Nondominated Sorting Genetic Algorithm II was linked to the EPA-SWMM to generate non-dominated sets of solutions that characterizes the tradeoffs between reduction in number of SSOs and cost (Case I), and the tradeoff between of volume of SSOs and cost (Case II). The results show that, when maximizing the reduction of number SSOs, the algorithm target first regions of the network with higher density of SSOs. When maximizing the reduction of volume of SSOs, the solutions prioritize the nodes with the largest overflow volumes. The tested approach provides a range of options to decision makers that seek to reduce or eliminate SSOs in an existing sanitary sewer system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others


  • Damvergis CN (2014) Sewer systems: failures and rehabilitation. Water Utility Journal 8:17–24

    Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197. doi:10.1109/4235.996017

    Article  Google Scholar 

  • EPA. (1993). Manual: Combined Sewer Overflow Control. Retrieved from Washington DC:

  • EPA. (2015). Sanitary sewer overflows and peak flows. Water: Sanitary Sewer Overflows. Retrieved from

  • Friedrich T, Wagner M (2015) Seeding the initial population of multi-objective evolutionary algorithms: a computational study. Appl Soft Comput 33:223–230. doi:10.1016/j.asoc.2015.04.043

    Article  Google Scholar 

  • Greeley, & Hansen. (2015). Basis for cost opinions. Retrieved from Alexandria, VA:

    Google Scholar 

  • Grefenstette JJ (1987) Incorporating problem specific knowledge into genetic algorithms. Genet Algorithms Simul Annealing 4:42–60

    Google Scholar 

  • Grosan C, Abraham A, Ishibuchi H (2007) Hybrid evolutionary algorithms, vol 75. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Halfawy MR, Dridi L, Baker S (2008) Integrated decision support system for optimal renewal planning of sewer networks. J Comput Civ Eng 22(6):360–372. doi:10.1061/(Asce)0887-3801(2008)22:6(360)

    Article  Google Scholar 

  • Hansen, N. (2006). The CMA Evolution Strategy: A Comparing Review. In J. A. Lozano, P. Larranaga, I. Inza, & E. Bengoetxea (Eds.), Towards an New Evolutionary Computation (Vol. 192, pp. 75–102): Springer Berlin Heidelberg.

  • Hopper E, Turton B (2001) An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem. Eur J Oper Res 128(1):34–57. doi:10.1016/S0377-2217(99)00357-4

    Article  Google Scholar 

  • Liang LY, Thompson RG, Young DM (2004) Optimising the design of sewer networks using genetic algorithms and tabu search. Eng Constr Archit Manag 11(2):101–112. doi:10.1108/09699980410527849

    Article  Google Scholar 

  • Lin Y, Chen Y, Yang M, Su T (2016) Multiobjective optimal Design of Sewerage Rehabilitation by using the nondominated sorting genetic algorithm-II. Water Resour Manag 30(2):487–503. doi:10.1007/s11269-015-1173-x

    Article  Google Scholar 

  • Matthews JC (2015) Large-diameter sewer rehabilitation using a fiber-reinforced cured-in-place pipe. Pract Period Struct Des Constr 20(2):5

    Article  Google Scholar 

  • Merrill, S., Lukas, A., Roberts, C., & Palmer, R. N. (2003). Reducing Peak Rainfall-Derived Infiltration/Inflow Rates - Case Studies and Protocol Vol. 99-WWF-8. W. E. R. F.-I. W. Association (Ed.)

  • Rahnamayan S, Tizhoosh H, Salama M (2007) A novel population initialization method for accelerating evolutionary algorithms. Computers & Mathematics With Applications 53(10):1605–1614. doi:10.1016/j.camwa.2006.07.013

    Article  Google Scholar 

  • Rathnayake US, Tanyimboh TT (2015) Evolutionary multi-objective optimal control of combined sewer overflows. Water Resour Manag 29(8):2715–2731. doi:10.1007/s11269-015-0965-3

    Article  Google Scholar 

  • Rossman LA (2010) Storm Water Management Model User's Manual. Retrieved from Cincinnati, OH

    Google Scholar 

  • Wright L, Mosley C, Heaney JP, Dent S (2001) Optimization of Upstream and Downstream Controls for Sanitary Sewer Overflows. Paper presented at the symposium on urban drainage modeling at the world water and environmental resources congress. Orlando, FL

    Google Scholar 

Download references


This project was funded by the San Antonio Water System (SAWS) under the inter-local agreement: Development of an optimization framework for sanitary sewer overflow reduction, contract No CD-M-14-040-MR. The authors would like to express their gratitude to all SAWS engineers who facilitated the research through positive participation and provision of required data.

Financial assistance from the U.S. Department of Agriculture/National Institute of Food and Agriculture (Award Number: 2014-38422-22088) to support students’ experiential learning is gratefully acknowledged.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Olufunso Ogidan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogidan, O., Giacomoni, M. Multiobjective Genetic Optimization Approach to Identify Pipe Segment Replacements and Inline Storages to Reduce Sanitary Sewer Overflows. Water Resour Manage 30, 3707–3722 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: