Skip to main content

Water Variability and the Economic Impacts on Small-Scale Farmers. A Farm Risk-Based Integrated Modelling Approach

Abstract

Strengthening the planning of hydrological resources to optimize the use of water in agriculture is a key adaptation measure of the Chilean agricultural sector to cope with future climate change. To address this challenge, decision-makers call for tools capable of representing farmers’ behaviours under the likely stresses generated by future climate conditions. In this context, of special concern are the effects of water variability on small-scale farmers, who commonly operate with narrow profit margins and who lack access to financial resources and technological knowledge. This paper sheds light on the economic impacts of changes in water availability on small-scale agriculture. We provide a hydro-economic modelling framework that captures the socio-economic effects of water shocks on smallholders in the Vergara River Basin, Chile. This approach links a farm risk-based economic optimization model to a hydrologic simulation model adjusted for the basin. Our results indicate that at the aggregated level, there will be minor economic impacts of climate change on the basin’s small-scale agriculture, with small decreases in both expected utility and wealth. However, large differences in the economic impacts of wealthy and poor small-scale farmers are found. Changes in water availability, reduce the options of land reallocation to increase farmer’s expected utility, being the poor small-scale farmers the most negatively affected.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Notes

  1. Classification of small-scale farmers in Chile accounts for agro-ecological characteristics, access to capital and technology, market orientation, cultivated land area and agricultural potential (OECD 2008).

  2. The complete mathematical details of the calibration process used here are provided in Petsakos and Rozakis (2015) .

References

  • Agostini CA, Brown PH, Góngora DP (2008) Distribución espacial de la pobreza en Chile. Estud Econ 35:79–110

    Google Scholar 

  • Apey A, Barril A (2006) Pequeña agricultura en Chile. Rasgos socioproductivos, institucionalidad y clasificación territorial para la innovación Editores, IICA, ODEPA

  • Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment part I: model development. JAWRA J Am Water Res Assoc. doi:10.1111/j.1752-1688.1998.tb05961.x

    Google Scholar 

  • Bar-Shira Z, Just RE, Zilberman D (1997) Estimation of farmers’ risk attitude: an econometric approach. Agric Econ 17:211–222

    Article  Google Scholar 

  • Bates B, Kundzewicz ZW, Wu S, Palutikof J (2008) Climate change and water. Technical paper of the intergovernmental panel on climate change. IPCC Secretariat, Geneva

  • Bellon MR, Hodson D, Hellin J (2011) Assessing the vulnerability of traditional maize seed systems in Mexico to climate change. Proc Natl Acad Sci 108:13432–13437

    Article  Google Scholar 

  • Berger T, Birner R, McCarthy N, DíAz J, Wittmer H (2006) Capturing the complexity of water uses and water users within a multi-agent framework. Water Resour Manag 21:129–148. doi:10.1007/s11269-006-9045-z

    Article  Google Scholar 

  • Blanco-Gutiérrez I, Varela-Ortega C, Purkey DR (2013) Integrated assessment of policy interventions for promoting sustainable irrigation in semi-arid environments: a hydro-economic modeling approach. J Environ Manag 128:144–160

    Article  Google Scholar 

  • Brouwer R, Hofkes M (2008) Integrated hydro-economic modelling: approaches, key issues and future research directions. Ecol Econ 66:16–22

    Article  Google Scholar 

  • Cano C, Andreoli A, Arumi JL, Rivera D (2014) Uso de imágenes de satélite para evaluar los efectos de cambio de cobertura de suelo en la escorrentía directa de una cuenca andina. Tecnología Cienc Agua 5:145–151

    Google Scholar 

  • Chavas J-P (2004) Risk analysis in theory and practice. Elsevier Academic Press, San Diego

    Google Scholar 

  • Christie DA et al (2011) Aridity changes in the Temperate-Mediterranean transition of the Andes since AD 1346 reconstructed from tree-rings. Clim Dyn 36:1505–1521

    Article  Google Scholar 

  • D’Agostino DR, Scardigno A, Lamaddalena N, El Chami D (2014) Sensitivity analysis of coupled hydro-economic models: quantifying climate change uncertainty for decision-making. Water Resour Manag 28:4303–4318

    Article  Google Scholar 

  • Deressa TT, Hassan RM, Ringler C, Alemu T, Yesuf M (2009) Determinants of farmers’ choice of adaptation methods to climate change in the Nile Basin of Ethiopia. Glob Environ Chang 19:248–255

    Article  Google Scholar 

  • Donoso G, Cancino J, López de Lérida J, Contreras H, Rivas W (2010) Evaluacion de Impacto de los Programas de INDAP: Programa de Desarrollo Local -Programa de Desarrollo de Comunas Pobres. Chile

  • Easterling W, Aggarwal P, Batima P et al. (2007) Food, fibre and forest products. Climate Change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 273–313

  • Espinosa J, Uribe H, Arumí J, Rivera D, Stehr A (2011) Vulnerabilidad del recurso hídrico respecto a actividades agrícolas en diferentes subcuencas del rio Limarí. Gestión Ambiental 22:15–30

    Google Scholar 

  • Esteve P, Varela-Ortega C, Blanco-Gutiérrez I, Downing TE (2015) A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture. Ecol Econ 120:49–58. doi:10.1016/j.ecolecon.2015.09.017

    Article  Google Scholar 

  • Falvey M, Garreaud RD (2009) Regional cooling in a warming world: Recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006). J Geophys Res Atmos (1984–2012) 114

  • FAO (2014a) Deep roots. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2014b) The state of food and agriculture. Innovation in family farming. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAOSTAT (2015) Available at: http://faostat3.fao.org/home/E. accessed: March, 2015

  • Fernández FJ, Blanco M (2015) Modelling the economic impacts of climate change on global and European agriculture: review of economic structural approaches Economics: the Open-Access. Open-Assess E-J 9:1–53

    Google Scholar 

  • Field CB, Barros VR, Mach K, Mastrandrea M (2014) Climate change 2014: impacts, adaptation, and vulnerability Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

  • Foster W, Valdés A (2013) ¿Cuál es el tamaño económico del sector silvoagropecuario? Cálculo para el año 2008 considerando sus encadenamientos. Ministerio de Agricultura, Chile

    Google Scholar 

  • Foster T, Brozović N, Butler AP (2014) Modeling irrigation behavior in groundwater systems. Water Resour Res 50:6370–6389

    Article  Google Scholar 

  • Graveline N, Majone B, Van Duinen R, Ansink E (2014) Hydro-economic modeling of water scarcity under global change: an application to the Gállego river basin (Spain). Reg Environ Chang 14:119–132

    Article  Google Scholar 

  • Gutowski Jr WJ, Decker SG, Donavon RA, Pan Z, Arritt RW, Takle ES (2003) Temporal-spatial scales of observed and simulated precipitation in central US climate. J Clim 16:3841–3847

  • Harou JJ, Pulido-Velazquez M, Rosenberg DE, Medellín-Azuara J, Lund JR, Howitt RE (2009) Hydro-economic models: concepts, design, applications, and future prospects. J Hydrol 375:627–643

    Article  Google Scholar 

  • Harvey CA et al (2014) Extreme vulnerability of smallholder farmers to agricultural risks and climate change in Madagascar. Philos Trans R Soc B: Biol Sci 369:20130089

    Article  Google Scholar 

  • Hassan R, Nhemachena C (2008) Determinants of African farmers’ strategies for adapting to climate change: multinomial choice analysis. Afr J Agric Res Econ 2:83–104

    Google Scholar 

  • Hazell PB (2005) Is there a future for small farms? Agric Econ 32:93–101

    Article  Google Scholar 

  • Hazell PB, Norton RD, Hazell PBR, Hazell PBR (1986) Mathematical programming for economic analysis in agriculture. Macmillan Publishing Company, New York

    Google Scholar 

  • Heinz I, Pulido-Velazquez M, Lund J, Andreu J (2007) Hydro-economic modeling in river basin management: implications and applications for the European water framework directive. Water Resour Manag 21:1103–1125

    Article  Google Scholar 

  • Howitt RE (1995) Positive mathematical programming. Am J Agric Econ 77:329–342

    Article  Google Scholar 

  • Howitt RE (2005) Agricultural and environmental policy models: calibration, estimation and optimization Davis: University of California, Davis Available online at http://www.agecon.ucdavis.edu/people/faculty/facultydocs/howitt/master pdf

  • Hurd BH, Coonrod J (2012) Hydro-economic consequences of climate change in the upper Rio Grande. Clim Res 53:103

    Article  Google Scholar 

  • INE (2007) Censo Agropecuario

  • INE (2009) Informe Anual de Estadísticas Agropecuarias. Santiago de Chile

  • INE (2010) Informe Anual de Estadísticas Agropecuarias. Santiago de Chile

  • Jiang Q, Grafton RQ (2012) Economic effects of climate change in the Murray–Darling Basin. Aust Agric Syst 110:10–16

    Article  Google Scholar 

  • Kanellopoulos A, Berentsen P, Heckelei T, Van Ittersum M, Lansink AO (2010) Assessing the forecasting performance of a generic bio‐economic farm model calibrated with two different PMP variants. J Agric Econ 61:274–294

    Article  Google Scholar 

  • Katz RW, Parlange MB, Naveau P (2002) Statistics of extremes in hydrology. Adv Water Resour 25:1287–1304

    Article  Google Scholar 

  • Kurukulasuriya P, Rosenthal S (2013) Climate change and agriculture: a review of impacts and adaptations. World Bank, Washington

    Google Scholar 

  • Lindoso DP, Rocha JD, Debortoli N, Parente II, Eiró F, Bursztyn M, Rodrigues-Filho S (2014) Integrated assessment of smallholder farming’s vulnerability to drought in the Brazilian Semi-arid: a case study in Ceará. Clim Chang 127:93–105

    Article  Google Scholar 

  • Maneta M et al (2009a) Assessing agriculture–water links at the basin scale: hydrologic and economic models of the São Francisco River Basin, Brazil. Water Int 34:88–103

    Article  Google Scholar 

  • Maneta M et al. (2009b) A spatially distributed hydroeconomic model to assess the effects of drought on land use, farm profits, and agricultural employment. Water Res Res 45

  • Medellín-Azuara J, Mendoza-Espinosa L, Lund J, Harou J, Howitt R (2009) Virtues of simple hydro-economic optimization: Baja California. Mexico J Environ Manag 90:3470–3478

    Article  Google Scholar 

  • Morton JF (2007) The impact of climate change on smallholder and subsistence agriculture. Proc Natl Acad Sci U S A 104:19680–19685. doi:10.1073/pnas.0701855104

    Article  Google Scholar 

  • Nagayets O (2005) Small farms: current status and key trends. The future of small farms:355

  • Nakicenovic N, Alcamo J, Davis G et al. (2000) Special report on emissions scenarios vol 1. Cambridge University Press, Cambridge

  • ODEPA (2010) Estimación del impacto socioeconómico del cambio climático en el Sector Silvoagropecuario de Chile. Oficina de Estudios y Políticas Agrarias (ODEPA)

  • OECD (2008) OECD review of agricultural policies: Chile 2008. OECD Publishing, Paris

    Google Scholar 

  • Parry M, Rosenzweig C, Iglesias A, Fischer G, Livermore M (1999) Climate change and world food security: a new assessment. Glob Environ Chang 9:S51–S67

    Article  Google Scholar 

  • Peña-Haro S, Llopis-Albert C, Pulido-Velazquez M, Pulido-Velazquez D (2010) Fertilizer standards for controlling groundwater nitrate pollution from agriculture: El Salobral-Los Llanos case study. Spain J of Hydrol 392:174–187

    Article  Google Scholar 

  • Peña-Haro S, Pulido-Velazquez M, Llopis-Albert C (2011) Stochastic hydro-economic modeling for optimal management of agricultural groundwater nitrate pollution under hydraulic conductivity uncertainty. Environ Model Softw 26:999–1008

    Article  Google Scholar 

  • Petsakos A, Rozakis S (2015) Calibration of agricultural risk programming models. Eur J Oper Res 242:536–545

    Article  Google Scholar 

  • Ponce R, Blanco Fonseca M, Giupponi C (2014) The economic impacts of climate change on the chilean agricultural sector: a non-linear agricultural supply model Chilean. J Agric Res 74:404–412. doi:10.4067/S0718-58392014000400005

    Google Scholar 

  • Ponce R, Blanco M, Giupponi C (2015) Welfare effects of water variability in agriculture. Insights from a multimarket model. Water 7:2908–2923

    Article  Google Scholar 

  • Porter JR et al. (2014) Food security and food production systems. In: Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 485–533

  • Qureshi M, Qureshi S, Bajracharya K, Kirby M (2008) Integrated biophysical and economic modellingframework to assess impacts of alternative groundwater management options. Water Resour Manag 22:321–341

    Article  Google Scholar 

  • Qureshi ME, Hanjra MA, Ward J (2013) Impact of water scarcity in Australia on global food security in an era of climate change. Food Policy 38:136–145

    Article  Google Scholar 

  • Ravallion M, Datt G (2002) Why has economic growth been more pro-poor in some states of India than others? J Dev Econ 68:381–400

    Article  Google Scholar 

  • Rivano F, Jara J (2005) Estimación de la evapotranspiración de referencia en la localidad de Remehue-Osorno, X región. Agro sur 33:49–61

    Article  Google Scholar 

  • Rosegrant MW, Hazell PB (2000) Transforming the rural Asian economy: the unfinished revolution. Oxford University Press, Oxford

    Google Scholar 

  • Rosenzweig MR, Binswanger HP (1992) Wealth, weather risk, and the composition and profitability of agricultural investments vol 1055. World Bank Publications, Washington

    Google Scholar 

  • Samaniego J, De Miguel CJ, Galindo LM, Gómez JJ, Martínez K, Cetrángolo O (2009) La economía del cambio climático en Chile: síntesis. Naciones Unidas, Santiago

    Google Scholar 

  • Santibáñez F, Santibáñez P, Cabrera R, Solis L, Quiroz M, Hernandez J (2008) Impactos productivos en el sector silvoagropecuario de Chile frente a escenarios de Cambio Climático. In: Análisis de vulnerabilidad del sector silvoagropecuario, recursos hídricos y edáficos de Chile frente a escenarios de Cambio Climático. Gobierno de Chile, Santiago, pp 1–181

  • Stehr A, Debels P, Romero F, Alcayaga H (2008) Hydrological modelling with SWAT under conditions of limited data availability: evaluation of results from a Chilean case study. Hydrol Sci J 53:588–601. doi:10.1623/hysj.53.3.588

    Article  Google Scholar 

  • Stehr A, Aguayo M, Link O, Parra O, Romero F, Alcayaga H (2010a) Modelling the hydrologic response of a mesoscale Andean watershed to changes in land use patterns for environmental planning. Hydrol Earth Syst Sci 14:1963–1977. doi:10.5194/hess-14-1963-2010

    Article  Google Scholar 

  • Stehr A, Debels P, Arumi J, Alcayaga H, Romero F (2010b) Modeling the hydrological response to climate change: experiences from two south-central Chilean watersheds. Tecnologia Cienc Agua 1:37–58

    Google Scholar 

  • Stocker TF, Qin D, Plattner G-K et al. (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Tol RS, Downing TE, Kuik OJ, Smith JB (2004) Distributional aspects of climate change impacts. Glob Environ Chang 14:259–272

    Article  Google Scholar 

  • Torres MO, Maneta M, Howitt R, Vosti SA, Wallender WW, Bassoi LH, Rodrigues LN (2012) Economic impacts of regional water scarcity in the São Francisco River Basin, Brazil: an application of a linked hydro-economic model. Environ Dev Econ 17:227–248

    Article  Google Scholar 

  • Torres R, Azócar G, Rojas J, Montecinos A, Paredes P (2015) Vulnerability and resistance to neoliberal environmental changes: an assessment of agriculture and forestry in the Biobio region of Chile (1974–2014). Geoforum 60:107–122. doi:10.1016/j.geoforum.2014.12.013

    Article  Google Scholar 

  • Traub A (2014) Análisis macrosectorial: PIB 2013 y agricultura. ODEPA, Santiago

    Google Scholar 

  • Varela-Ortega C, Blanco-Gutiérrez I, Swartz CH, Downing TE (2011) Balancing groundwater conservation and rural livelihoods under water and climate uncertainties: an integrated hydro-economic modeling framework. Glob Environ Chang 21:604–619

    Article  Google Scholar 

  • Von Neumann J, Morgenstern O (1944) Theory of games and economic behavior. Princeton University Press, Princeton

    Google Scholar 

  • Ward FA, Pulido-Velazquez M (2012) Economic costs of sustaining water supplies: findings from the Rio Grande. Water Resour Manag 26:2883–2909

    Article  Google Scholar 

  • Wood SA, Jina AS, Jain M, Kristjanson P, DeFries RS (2014) Smallholder farmer cropping decisions related to climate variability across multiple regions. Glob Environ Chang 25:163–172

    Article  Google Scholar 

  • World Bank (2008) World development report-“Agriculture for development”. World Bank, Washington DC. doi:10.1596/978-0-8213-7235-7

    Google Scholar 

  • Yang Y-CE, Brown CM, Yu WH, Savitsky A (2013) An introduction to the IBMR, a hydro-economic model for climate change impact assessment in Pakistan’s Indus River basin. Water Int 38:632–650

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank to International Development Research Centre (IDRC-Canada) for providing financial support for this research (n° 106924–001). We would also like to thank to Water Research Center for Agriculture and Mining (WARCAM) supported by CONICYT/Chile in the framework of FONDAP 2013 (Fifth National Competition for Research Centers in Priorities Areas)—CRHIAM/CONICYT/FONDAP 15130015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Fernández.

Ethics declarations

Author Francisco Fernández has received research grants from IDRC-Canada and WARCAM.

Funding

This study was funded by International Development Research Centre (IDRC-Canada) (n° 106924–001) and by Water Research Center for Agriculture and Mining (WARCAM) supported by CONICYT/Chile in the framework of FONDAP 2013 (n° 15130015).

Conflict of Interest

Disclosure of potential conflicts of interest: Authors declare that they do not have a conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández, F.J., Ponce, R.D., Blanco, M. et al. Water Variability and the Economic Impacts on Small-Scale Farmers. A Farm Risk-Based Integrated Modelling Approach. Water Resour Manage 30, 1357–1373 (2016). https://doi.org/10.1007/s11269-016-1227-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-016-1227-8

Keywords