Integrated Structural Analysis and Life Cycle Assessment of Equivalent Trench-Pipe Systems for Sewerage

Abstract

The demand for sanitation infrastructures is increasing due to a rise in the urban population. To meet the need for wastewater collection, the construction of sewer networks must comply with a series of technical parameters that indicate whether a solution is feasible or not. Considering that this construction implies a series of environmental impacts, this study coupled a structural analysis of one linear metre of sewer constructive solutions with their life cycle impacts. Different pipe materials (concrete, polyvinylchloride (PVC) and high-density polyethylene (HDPE)) were combined with different trench designs and their environmental performance was assessed using Life Cycle Assessment (LCA). These solutions complied with technical parameters consisting of traffic loads and pavement conditions, among others. Concrete pipes embedded in granular matter result in fewer environmental impacts, such as Global Warming Potential or Cumulative Energy Demand. Further, re-using the excavated soil results in up to 80 % of environmental savings with respect to extracting new materials. Concerning traffic loads and pavement conditions, failures in plastic pipes could be avoided if these are embedded in concrete. Moreover, the environmental impacts of this solution are similar to those resulting from the substitution of pipes that do not comply with the mechanical requirements of the construction site. Therefore, proper planning is needed to provide cities with sewers that are resilient to time and external loads and reduce the urban environmental impacts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Anders K, Anders A (1997) Environmental assessment of sewage pipes in PVC, PE, PP and concrete (Miljøvurdering af afløbsrør i PVC, PE, PP og beton). DOR/Nordiska Plaströrgruppen, Stock

    Google Scholar 

  2. ASTM Standard C118 (2011) Standard Specification for Concrete Pipe for Irrigation or Drainage. doi:10.1520/C0118-11, www.astm.org

  3. ASTM Standard D2321 (2014) Standard Practice for Underground Installation of Thermoplastic Pipe for Sewers and Other Gravity-Flow Applications. doi:10.1520/D2321-14, www.astm.org

  4. Bizier P (2007) Gravity sanitary sewer design and construction, ASCE 2nd E. ASCE Publications, ASCE Publications

  5. Blanco A, Pujadas P, Cavalaro SHP, Aguado A (2014) Methodology for the design of controlled low-strength materials. Application to the backfill of narrow trenches. Constr Build Mater 72:23–30. doi:10.1016/j.conbuildmat.2014.09.008

    Article  Google Scholar 

  6. Bobylev N (2011) Comparative analysis of environmental impacts of selected underground construction technologies using the analytic network process. Autom Constr 20:1030–1040. doi:10.1016/j.autcon.2011.04.004

    Article  Google Scholar 

  7. Bottero M, Peila D (2005) The use of the analytic hierarchy process for the comparison between microtunnelling and trench excavation. Tunn Undergr Sp Technol 20:501–513. doi:10.1016/j.tust.2005.03.004

    Article  Google Scholar 

  8. CPSA. Concrete Pipeline Systems Association (2010) PAS 2050- partial lifecycle assessment. Cradle-to-gate analysis for concrete pipeline. Manhole Ring and Cover Slab

  9. da Silva JL, El Debs MK, Beck AT (2008) Reliability evaluation of reinforced concrete pipes in crack opening limit state. RIEM 1:314–330

    Google Scholar 

  10. Davies J, Clarke B, Whiter J et al (2001) The structural condition of rigid sewer pipes: a statistical investigation. Urban Water 3:277–286. doi:10.1016/S1462-0758(01)00036-X

    Article  Google Scholar 

  11. de la Fuente A, Escariz RC, de Figueiredo AD, Molins C, Aguado A (2012) A new design method for steel fibre reinforced concrete pipes. Constr Build Mater 30:547–555. doi:10.1016/j.conbuildmat.2011.12.015

    Article  Google Scholar 

  12. De La Fuente A, Escariz RC, De Figueiredo AD, Aguado A (2013) Design of macro-synthetic fibre reinforced concrete pipes. Constr Build Mater 43:523–532. doi:10.1016/j.conbuildmat.2013.02.036

    Article  Google Scholar 

  13. EN 1401-1:2009 Plastic piping systems for non-pressure underground drainage and sewerage. Unplasticized poly(vinyl chloride) (PVC-U). Specifications for pipes, fittings and the system. British Standards Institution

  14. EN 1916:2002 Concrete pipes and fitting, unreinforced, steel fibre and reinforced. AENOR, Madrid

  15. Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, Koning A de, Oers L van, Wegener Sleeswijk A, Suh S, Udo de Haes HA, Bruijn H de, Duin R van HM (2002) Handbook on life cycle assessment. Operational guide to the ISO standards. I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: Scientific background. Kluwer Academic Publishers, ISBN 1-4020-0228-9, Dordrecht, 692 pp.

  16. Haghighi A, Bakhshipour AE (2012) Optimization of sewer networks using an adaptive genetic algorithm. Water Resour Manag 26:3441–3456. doi:10.1007/s11269-012-0084-3

    Article  Google Scholar 

  17. Hischier R, Weidema B, Althaus H et al (2010) Implementation of life cycle impact assessment methods. Final report ecoinvent v2.2 No. 3. Swiss Centre for Life Cycle Inventories, Dübendorf

    Google Scholar 

  18. Hodges SH, Enyart JI (1993) Standard installation. International Conference on Pipeline Infrastructure, Texas

    Google Scholar 

  19. INTRON (1995) Environmental profile and environmental measures of a concrete external sewer [Intron report No. 95027] and Environmental profile and environmental measures of an external sewer of PVC and vitrified clay in comparison to concrete [Intron report No. 95195]. INTRON, Netherlands

    Google Scholar 

  20. ISO (2006) ISO 14040: 2006 Environmental management - Life cycle assessment - Principles and framework

  21. Jin NJ, Hwang HG, Yeon JH (2013) Structural analysis and optimum design of GRP pipes based on properties of materials. Constr Build Mater 38:316–326. doi:10.1016/j.conbuildmat.2012.07.115

    Article  Google Scholar 

  22. Marston A (1930) The theory of external loads on closed conduits in the light of the latest experiments. Bulletin 96. Iowa Engineering Experiments Station, Ames

    Google Scholar 

  23. McGrath TJ, Chambers RE, Sharff PA (1990) Recent trends in installation standards for plastic pipe. Buried plastic pipe technology. ASTM STP 1093:281–293

    Google Scholar 

  24. Mendoza J-M, Oliver-Solà J, Gabarrell X, Rieradevall J, Josa A (2012) Planning strategies for promoting environmentally suitable pedestrian pavements in cities. Transp Res Part D: Transp Environ 17:442–450. doi:10.1016/j.trd.2012.05.008

    Article  Google Scholar 

  25. MetaBase ITeC (2010) Online ITeC database: prices, technical details, companies, certificates, product pictures and environmental data. http://www.itec.cat/metabase. Accessed Feb 2013

  26. Moser AP (2001) Buried plastic pipe technology, issue 1093. ASTM International

  27. Petit-Boix A, Sanjuan-Delmás D, Gasol C et al (2014) Environmental assessment of sewer construction in small to medium sized cities using life cycle assessment. Water Resour Manag 28:979–997. doi:10.1007/s11269-014-0528-z

    Article  Google Scholar 

  28. Petit-Boix A, Sanjuan-Delmás D, Chenel S et al (2015) Assessing the energetic and environmental impacts of the operation and maintenance of Spanish sewer networks from a life-cycle perspective. Water Resour Manag 29:2581–2597. doi:10.1007/s11269-015-0958-2

    Article  Google Scholar 

  29. Peyvandi A, Soroushian P, Jahangirnejad S (2014) Structural design methodologies for concrete pipes with steel and synthetic fiber reinforcement. ACI Struct J 111:83–91

    Google Scholar 

  30. PRé Consultants (2010) SimaPro 7.2.0. PRé Consultants, Amersfoort

    Google Scholar 

  31. Pujadas P, Blanco A, Cavalaro S, Aguado A (2015) Performance-based procedure for the definition of controlled Low-strength mixtures. J Mater Civ Eng 27:06015003. doi:10.1061/(ASCE)MT.1943-5533.0001283

    Article  Google Scholar 

  32. Sanjuan-Delmás D, Petit-Boix A, Gasol C et al (2014) Environmental assessment of different pipelines for drinking water transport and distribution network in small to medium cities: a case from Betanzos, Spain. J Clean Prod 66:588–598. doi:10.1016/j.jclepro.2013.10.055

    Article  Google Scholar 

  33. Spangler MG (1941) The structural design of flexible pipe culverts. Bull. 153. Eng. Exp. Stn, Ames

    Google Scholar 

  34. Swamee PK, Sharma AK (2013) Optimal design of a sewer line using linear programming. Appl Math Model 37:4430–4439. doi:10.1016/j.apm.2012.09.041

    Article  Google Scholar 

  35. Swiss Centre for Life Cycle Inventories (2009) ecoinvent database v3.0. Technical report

  36. The World Bank (2014) Urban population (% of total). http://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS. Accessed Jul 2014

  37. Twort AC, Ratnayaka DD, Brandt MJ (2000) Water supply. Butterworth-Heinemann

  38. U.S. Army Corps of Engineers (1998) Engineering and design. Conduits, culverts, and pipes. Engineer Manual 1110-2-2902. Washington, 20314-1000

  39. UN. United Nations. Department of economic and social affairs. Population division (2012) World Urbanization Prospects: The 2011 Revision, CD-ROM Edition

  40. UNE 53331:1997 Plastics. Unplastized poly(vinyl chloride) and high and medium density polyethylene (PE) pipes. Criterion for the assessment of pipes for plastics piping systems with car without pressure under external loads. AENOR, Madrid

  41. Valderrama C, Granados R, Cortina JL, Gasol CM, Josa A (2013) Comparative LCA of sewage sludge valorisation as both fuel and raw material substitute in clinker production. J Clean Prod 51:205–213. doi:10.1016/j.jclepro.2013.01.026

    Article  Google Scholar 

  42. Venkatesh G, Hammervold J, Brattebø H (2009) Combined MFA-LCA for Analysis of Wastewater Pipeline Networks. J Ind Ecol 13:532–550. doi:10.1111/j.1530-9290.2009.00143.x

    Article  Google Scholar 

  43. Viñolas B (2011) Applications and methodology advances in MIVES multicriteria valorations (Aplicaciones y avances de la metodología MIVES en valoraciones multicriterio). Doctoral Thesis. Universitat Politècnica de Catalunya

Download references

Acknowledgments

The authors would like to thank the Spanish Ministry of Education for the grant awarded to A. Petit-Boix (FPU13/01273) to conduct this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anna Petit-Boix.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 534 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Petit-Boix, A., Roigé, N., de la Fuente, A. et al. Integrated Structural Analysis and Life Cycle Assessment of Equivalent Trench-Pipe Systems for Sewerage. Water Resour Manage 30, 1117–1130 (2016). https://doi.org/10.1007/s11269-015-1214-5

Download citation

Keywords

  • Sewer
  • Pipe
  • Trench
  • Construction
  • LCA
  • Urban design