Skip to main content

Advertisement

Log in

Clustering Quantile Regression-Based Drought Trends in Taiwan

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Drought is a normal, recurring climatic feature and occurs in all climatic zones. Imbalanced water availability induced by droughts has far-reaching and adverse impacts both on human lives and natural environments. This study aims to summarize temporal and spatial drought variations in Taiwan by combining quantile regression and cluster analysis. Three-monthly rainfall series covering the 1947–2012 period for 12 rainfall stations are used in this study. Quantile regression is applied to 3-month SPI, drought duration, drought severity, and drought frequency series for exploring temporal drought trends at different quantiles. Various quantile slopes for these 12 stations are then analyzed by hierarchical agglomerative clustering algorithm to detect regional variation patterns. The results show considerable spatial diversity over Taiwan. Stations along east coast are prone to more severity due to declined SPI trends associated with increasing drought duration and severity. Positive SPI slope associated with decreasing drought duration and severity are noted at stations located in the west and lead to lessened droughts. However, temporal variations in drought-duration and drought-severity series are insignificant at most quantiles and stations. In addition, a distinct behavior is found in drought frequency since severe droughts may not accompany frequent droughts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson MJ (2008) Animal-sediment relationship re-visited: characterising species’ distributions along an environmental gradient using canonical analysis and quantile regression splines. J Exp Mar Biol Ecol 366(1–2):16–27

    Article  Google Scholar 

  • Andini M, Andini C (2014) Finance, growth and quantile parameter heterogeneity. J Macroecon 40:308–322

    Article  Google Scholar 

  • Andreadis KM, Lettenmaier DP (2006) Trends in 20th Century drought over the continental United States. Geophys Res Lett 33:L10403. doi:10.1029/2006GL25711

    Article  Google Scholar 

  • Barbosa SM (2008) Quantile trends in Baltic Sea level. Geophys Res Lett 35:L22704. doi:10.1029/2008GL035182

    Article  Google Scholar 

  • Barbosa SM, Scotto MG, Alonso AM (2011) Summarising changes in air temperature over Central Europe by quantile regression and clustering. Nat Hazards Earth Syst Sci 11(12):3227–3233

    Article  Google Scholar 

  • Bari Abarghouei H, Asadi Zarch MA, Dastorani MT, Kousari MR, Safari Zarch M (2011) The survey of climatic drought trend in Iran. Stoch Env Res Risk A 25(6):851–863

    Article  Google Scholar 

  • Baur DG, Dimpfl T, Jung RC (2012) Stock return autocorrelations revisited: a quantile regression approach. J Empir Finance 19(2):254–265

    Article  Google Scholar 

  • Bohora SB, Cao QV (2014) Prediction of tree diameter growth using quantile regression and mixed-effect models. For Ecol Manag 319:62–66

    Article  Google Scholar 

  • Bonaccorso B, Bordi I, Cancelliere A, Rossi G, Sutera A (2003) Spatial variability of drought: an analysis of the SPI in Sicily. Water Resour Manag 20(5):795–815

    Google Scholar 

  • Bonaccorso B, Peres DJ, Castano A, Cancelliere A (2015) SPI-based probabilistic analysis of drought areal extent in Sicily. Water Resour Manag 29(2):459–470

    Article  Google Scholar 

  • Burke EJ, Brown SJ (2008) Evaluating uncertainty in the projection of future drought. J Hydrometeorol 9(2):292–299

    Article  Google Scholar 

  • Chamaille-Jammes S, Fritz H, Murinadagomo F (2007) Detecting climate changes of concern in highly variable environments: Quantile regressions reveal that droughts worsen in Hwange national park, Zimbabwe. J Arid Environ 71(3):321–326

    Article  Google Scholar 

  • Chen ST, Kuo CC, Yu PS (2009) Historical trends and variability of meteorological droughts in Taiwan. Hydrol Sci J 54(3):430–441

    Article  Google Scholar 

  • Chen J, Vargas-Bustamante A, Mortensen K, Thomas SB (2014) Using quantile regression to examine health care expenditures during the great recession. Health Serv Res 49(2):705–730

    Article  Google Scholar 

  • Chin DA (2006) Water-resources engineering. Pearson Prentice Hall, New Jersey

    Google Scholar 

  • Dai A (2011) Characteristics and trends in various forms of the palmer drought severity index during 1900–2008. J Geophys Res 116:D12151. doi:10.1029/2010JD015541

    Google Scholar 

  • Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Chang 3(1):52–58

    Article  Google Scholar 

  • Gaglianone WP, Lima LR, Linton O, Smith DR (2011) Evaluating value-at-risk models via quantile regression. J Bus Econ Stat 29(1):150–160

    Article  Google Scholar 

  • Ganguli P, Reddy MJ (2012) Risk assessment of droughts in Gujarat using bivariate copulas. Water Resour Manag 26(11):3301–3327

    Article  Google Scholar 

  • Ganguli P, Reddy MJ (2014) Evaluation of trends and multivariate frequency analysis of drought in three meteorological subdivisions of western India. Int J Climatol 34(3):911–928

    Article  Google Scholar 

  • Gebregziabher M, Lynch CP, Mueller M, Gibert GE, Echols C, Zhao YM, Egede LE (2011) Using quantile regression to investigate racial disparities in medication non-adherence. BMC Med Res Methodol 11:88. doi:10.1186/1471-2288-11-88

    Article  Google Scholar 

  • Guttman NB (1999) Accepting the standardized precipitation index: a calculation algorithm. J Am Water Resour Assoc 35(2):311–322

    Article  Google Scholar 

  • Hirschi M, Seneviratne SI, Alexandrov V, Boberg F, Boroneant C, Christensen OB, Formayer H, Orlowsky B, Stepanek P (2011) Observational evidence for soil-moisture impact on hot extremes in southwestern Europe. Nat Geosci 4(1):17–21

    Article  Google Scholar 

  • Huang S, Chang J, Huang Q, Chen Y (2014) Spatio-temporal changes and frequency analysis of drought in the Wei River Basin, China. Water Resour Manag 28(10):3095–3110

    Article  Google Scholar 

  • Imai S, Katayama H, Krishna K (2013) A quantile-based test of protection for sale model. J Int Econ 91(1):40–52

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2013) Climate change 2013: the physical science basis, contribution of working groups I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York

    Google Scholar 

  • Karabörk MC (2007) Trends in drought pattern of Turkey. J Environ Eng Sci 6(1):45–52

    Article  Google Scholar 

  • Koenker R (2014) Quantreg: quantile regression. R package version 5.05. http://cran.r-project.org/web/packages/quantreg

  • Koenker R, Basset G (1987) Regression quantiles. Econometrica 46(1):33–50

    Article  Google Scholar 

  • Kousari MR, Dastorani MT, Niazi Y, Soheili E, Hayatzadeh M, Chezgi J (2014) Trend detection of drought in arid and semi-arid regions if Iran based on implementation of reconnaissance drought index (RDI) and application of non-parametrical statistical method. Water Resour Manag 28(7):1857–1872

    Article  Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. Proceedings of the 8th conference on applied climatology 179–184

  • Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391(1-2):202–216

    Article  Google Scholar 

  • Monteiro A, Carvalho A, Ribeiro I, Scotto M, Barbosa S, Alonso A, Baldasano JM, Pay MT, Miranda AI, Borrego C (2012) Trends in ozone concentrations in the Iberian Peninsula by quantile regression and clustering. Atmos Environ 56:184–193

    Article  Google Scholar 

  • Nicholls N (2004) The changing nature of Australian droughts. Clim Chang 63(3):323–336

    Article  Google Scholar 

  • Orlowsky B, Seneviratne SI (2013) Elusive drought: uncertainty in observed trends and short- and long-term CMIP5 projections. Hydrol Earth Syst Sci 17(5):1765–1781

    Article  Google Scholar 

  • Park JI, Kim N, Bae SJ (2012) A genetic-based iterative quantile regression algorithm for analyzing fatigue curves. Qual Reliab Eng Int 28(8):897–909

    Article  Google Scholar 

  • Piccarreta M, Capolongo D, Boenzi F (2004) Trend analysis of precipitation and drought in Basilicata from 1923 to 2000 within a southern Italy context. Int J Climatol 24(7):907–922

    Article  Google Scholar 

  • Rim CS (2013) The implications of geography and climate on drought trend. Int J Climatol 33(13):2799–2815

    Article  Google Scholar 

  • Santos JF, Portela MM, Pulido-Calvo I (2011) Regional frequency analysis of droughts in Portugal. Water Resour Manag 25(14):3537–3558

    Article  Google Scholar 

  • Schmidt TS, Clements WH, Cade BS (2012) Estimating risks to aquatic life using quantile regression. Freshw Sci 31(3):709–723

    Article  Google Scholar 

  • Sheffield J, Wood EF (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31(1):79–105

    Article  Google Scholar 

  • Shiau JT (2006) Fitting drought duration and severity with two-dimensional copulas. Water Resour Manag 20(5):795–815

    Article  Google Scholar 

  • Shiau JT, Chen TJ (2015) Quantile regression-based probabilistic estimation scheme for daily and annual suspended sediment loads. Water Resour Manag 29(8):2805–2818

    Article  Google Scholar 

  • Shiau JT, Hsiao YY (2012) Water-deficit-based drought risk assessment in Taiwan. Nat Hazards 64(1):237–257

    Article  Google Scholar 

  • Shiau JT, Huang WH (2015) Detecting distributional changes of annual rainfall indices in Taiwan using quantile regression. J Hydro Environ Res 9(3):368–380

    Article  Google Scholar 

  • Shiau JT, Modarres R, Nadarajah S (2012) Assessing multi-site drought connections in Iran using empirical copula. Environ Model Assess 17(5):469–482

    Article  Google Scholar 

  • Sousa SIV, Pires JCM, Martins FG, Pereira MC, Alvim-Ferraz MCN (2009) Potentialities of quantile regression to predict ozone concentrations. Environmetrics 20(2):147–158

    Article  Google Scholar 

  • Sousa PM, Trigo RM, Aizpurua P, Nieto R, Gimeno L, Garcia-Herrera R (2011) Trends and extreme of drought indices throughout the 20th century in the Mediterranean. Nat Hazards Earth Syst Sci 11(1):33–51

    Article  Google Scholar 

  • Spinoni J, Naumann G, Carrao H, Barbosa P, Vogt J (2014) World drought frequency, duration, and severity for 1951–2010. Int J Climatol 34(8):2792–2804

    Article  Google Scholar 

  • Tabari H, Abghari H, Talaee PH (2012) Temporal trends and spatial characteristics of drought and rainfall in arid and semiarid regions of Iran. Hydrol Process 26(22):3351–3361

    Article  Google Scholar 

  • Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought. Nat Clim Chang 4(1):17–22

    Article  Google Scholar 

  • Tsakiris G, Vangelis H (2004) Towards a drought watch system based on spatial SPI. Water Resour Manag 18(1):1–12

    Article  Google Scholar 

  • Tsakiris G, Pangalou D, Vangelis H (2007) Regional drought assessment based on the reconnaissance drought index (RDI). Water Resour Manag 21(5):821–833

    Article  Google Scholar 

  • Ul Haque A, Nehrir MH, Mandal P (2014) A hybrid intelligent model for deterministic and quantile regression approach for probabilistic wind power forecasting. IEEE Trans Power Syst 29(4):1663–1672

    Article  Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23(7):1696–1718

    Article  Google Scholar 

  • Villarini G, Smith JA, Baeck ML, Vitolo R, Stephenson DB, Krajewski WF (2011) On the frequency of heavy rainfall for the Midwest of the United States. J Hydrol 400:103–120

    Article  Google Scholar 

  • Wu H, Svoboda MD, Hayes MJ, Wilhite DA, Wen F (2007) Appropriate application of the standardized precipitation index in arid locations and dry seasons. Int J Climatol 27(1):65–79

    Article  Google Scholar 

  • Wu H, Soh LK, Samal A, Chen XH (2008) Trend analysis of streamflow drought events in Nebraska. Water Resour Manag 22(2):145–164

    Article  Google Scholar 

  • Wu H, Gao L, Zhang Z (2014) Analysis of crash data using quantile regression for counts. J Transp Eng 140(4):04013025. doi:10.1061/(ASCE)TE.1943-5436.0000650

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this study was graciously provided by the National Science Council, Taiwan, ROC (Grant No. NSC102-2221-E006-187). Valuable comments from anonymous reviewers for improving presentation are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenq-Tzong Shiau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiau, JT., Lin, JW. Clustering Quantile Regression-Based Drought Trends in Taiwan. Water Resour Manage 30, 1053–1069 (2016). https://doi.org/10.1007/s11269-015-1210-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-015-1210-9

Keywords