Water Resources Management

, Volume 30, Issue 1, pp 33–42 | Cite as

A New Method for Estimation the Regional Precipitation

  • Alina Barbulescu


In this article we propose a new method - the Most Probable Precipitation Method (MPPM) - for estimating the precipitation at regional scale. Comparisons with the Thiessen polygons methods (TPM), inverse distance weighting interpolation (IDW) and ordinary kriging (OK) on annual, monthly, seasonal and annual maximum monthly precipitation are provided. In all cases MPPM performs better than IDW and OK, and in most of them, better than TPM.


MPPM Frequency Error Thiessen polygons method IDW Kriging 


  1. Abtew W, Obeysekera J, Shih G (1993) Spatial analysis for monthly rainfall in South Florida. J Am Water Resour Assoc 29(2):179–188CrossRefGoogle Scholar
  2. Barbulescu A, Bautu E (2010) Mathematical models of climate evolution in Dobrudja. Theor Appl Climatol 100(1–2):29–44CrossRefGoogle Scholar
  3. Barbulescu A, Deguenon J (2014) Models for trend of precipitation in Dobrudja. Environ Eng Manag J 13(4):873–880Google Scholar
  4. Barbulescu A, Deguenon J (2015) About the variations of precipitation and temperature evolution in the Romanian Black Sea Littoral. Rom Rep Phys 7(2):625–637Google Scholar
  5. Barbulescu A, Deguenon J, Teodorescu D (2011) Study on water resources in the Black Sea region. Nova Publishers, USAGoogle Scholar
  6. Barbulescu A, Maftei C, Bautu E (2010) Modeling the hydro-meteorological time series. Applications to Dobrudja region. LAP Lambert Academic Publishing, GermanyGoogle Scholar
  7. Basistha A, Arya DS, Goel NK (2008) Spatial distribution of rainfall in indian himalayas a case study of uttarakhand region. Water Resour Manag 22:1325–1346CrossRefGoogle Scholar
  8. Buttafuoco G, Caloiero T, Coscarelli R (2011) Spatial patterns of variability for rain fields at different timescales: an application in southern Italy. Eur Water 36:3–13Google Scholar
  9. Campling P, Gobin A, Feyen J (2001) Temporal and spatial rainfall analysis across a humid tropical catchment. Hydrol. Process 15:359–375CrossRefGoogle Scholar
  10. Chang CL, Lo SL, Yu SL (2005) Applying fuzzy theory and genetic algorithm to interpolate precipitation. J Hydrol 314(1-4):92–104CrossRefGoogle Scholar
  11. Chang CL, Lo SL, Yu SL (2006) The parameter optimization in the inverse distance method by genetic algorithm for estimating precipitation. Environ Monit Assess 117:145–155CrossRefGoogle Scholar
  12. Cheng C-d, Cheng S-j, Wen J-c, Lee Ju-h (2012) Effects of raingauge distribution on estimation accuracy of areal rainfall. Water Resour Manag 26:1–20CrossRefGoogle Scholar
  13. Chiles J-P, Delfiner P (2012) Geostatistics. Modeling Spatial Uncertainty, 2nd. Wiley, HobokenCrossRefGoogle Scholar
  14. Cressie N (1998) Statistics for spatial data. Wiley Interscience, New YorkGoogle Scholar
  15. Daly C, Neilson RP, Phillips DL (1994) A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J Appl Meteorol 33(2):140–158CrossRefGoogle Scholar
  16. Garcia M, Peters-Lidard CD, Goodrich DC (2008) Spatial interpolation of precipitation in a dense gauge network for monsoon storm events in the southwestern United States. Water Resour Res 44:W05S13Google Scholar
  17. Goovaerts P (2000) Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J Hydrol 228(1-2):113–129CrossRefGoogle Scholar
  18. Hutchinson MF (1995) Interpolating mean rainfall using thin plate smoothing splines. Int J Geogr Inf Sci 9:385–403CrossRefGoogle Scholar
  19. Lu GY, Wong DW (2008) An adaptive inverse-distance weighting spatial interpolation technique. Comput Geosci - UK 34:1044–1055CrossRefGoogle Scholar
  20. Ly S, Charles C, Degre A (2013) Different methods for spatial interpolation of rainfall data for operational hydrology and hydrological modeling at watershed scale: a review. Biotechnol Agron Soc Environ 17(2):392–406Google Scholar
  21. Maftei C, Barbulescu A (2012) Statistical analysis of precipitation time series in the Dobrudja region. MAUSAM 63(4):553–564Google Scholar
  22. Matheron G (1981) Splines and Kriging: Their Formal Equivalence 8. Syracuse University Geologists ContributionsGoogle Scholar
  23. Simian D, Stoica F (2012) A general frame for building optimal multiple SVM kernels. Lect Notes Comput Sci 7116:256–263CrossRefGoogle Scholar
  24. Shope CL, Maharjan GR (2015) Modeling Spatiotemporal Precipitation: Effects of Density, Interpolation, and Land Use Distribution. Adv Meteorol 2015: Article ID 174196Google Scholar
  25. St-Hilaire A, Ouarda TBMJ, Lachance M, BObee B, Gaudet J, Gignac C (2003) Assessment of the impact of meteoro logical network density on the estimation of basin precipitation and runoff: a case study. Hydrol Proc 17:3561–3580CrossRefGoogle Scholar
  26. Szolgay J, Parajka J, Kohnova S, Hlavcova K (2009) Comparison of mapping approaches of design annual maximum daily precipitation. Atmos Res 92:289–307CrossRefGoogle Scholar
  27. Tabios GQ, Salas JD (1985) A comparative analysis of techniques for spatial interpolation of precipitation. Water Resour Bull 21:265–380Google Scholar
  28. Thiessen AH (1911) Precipitation averages for large areas. Mon Weather Rev 39(7):1082–1084Google Scholar
  29. Tigkas D, Vangelis H, Tsakiris (2013) The RDI as a composite climatic index. Eur Wat 41:17–22Google Scholar
  30. Tsakiris et al (2013) A system-based paradigm of drought analysis for operational management. Water Resour Manag 27:5281–5297CrossRefGoogle Scholar
  31. Wang S, Huang GH, Lin QG, Li Z, Zhang H, Fan YR (2014) Comparison of interpolation methods for estimating spatial distribution of precipitation in Ontario, Canada. Int J Climatol 33(14):3745–3751CrossRefGoogle Scholar
  32. World Meteorological Organization (2008) Guide to Hydrological Practices, WMO-No.164, 6th. WMO, GenevaGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Technical University of Civil Engineering, Doctoral SchoolBucharestRomania

Personalised recommendations