Skip to main content
Log in

A Machine Learning Approach for the Mean Flow Velocity Prediction in Alluvial Channels

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

In natural alluvial channels, the determination of the flow resistance constitutes a problem with additional complexity compared to rigid bed channels, due to the bed morphology transformations and the alterations of the flow properties caused by sediment transport. While there have been steps towards understanding the processes that contribute to flow resistance in an alluvial channel, a robust quantitative model with wide applicability remains elusive. Machine learning offers the ability to exploit available data and generate equations that accurately describe the problem by taking implicitly into account the contributing mechanisms that are difficult to be modeled. In this paper, four machine learning techniques are employed for the mean flow velocity prediction, separately for sand-bed and gravel-bed rivers, namely artificial neural networks, adaptive-network-based fuzzy inference system, symbolic regression based on genetic programming, and support vector regression. The derived models are robust and their results are superior to those of some widely used flow resistance formulae, which compute the mean flow velocity from similar independent hydraulic variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alam AM, Kennedy JF (1969) Friction factors for flow in sand bed channels. J Hydraul Div 95(HY6):1973–1992

    Google Scholar 

  • Azamathulla HM, Jarrett RD (2013) Use of gene-expression programming to estimate Manning’s roughness coefficient for high gradient streams. Water Resour Manag 27(3):715–729

    Article  Google Scholar 

  • Azamathulla HM, Ab Ghani A, Leow CS, Chang CK, Zakaria NA (2011) Gene-expression programming for the development of a stage-discharge curve of the Pahang River. Water Resour Manag 25(11):2901–2916

    Article  Google Scholar 

  • Baptist MJ, Babovic V, Rodriguez Uthurburu J, Keijer M, Uittenbogaard RE, Mynett A, Verwey A (2007) On inducing equations for vegetation resistance. J Hydraul Res 45(4):435–450

    Article  Google Scholar 

  • Bathurst JC (1985) Flow resistance estimation in mountain rivers. J Hydraul Eng 111(4):625–643

    Article  Google Scholar 

  • Bowden GJ, Maier HR, Dandy GC (2002) Optimal division of data for neural networks models in water resources applications. Water Resour Res 38(2):2–1–2–11

    Google Scholar 

  • Brownlie WR (1981) Compilation of alluvial channel data: Laboratory and field. Tech. Rep. KH-R-43B, W.M. Keck Laboratory of Hydraulics and Water Resources. California Institute of Technology, Pasadena, California

    Google Scholar 

  • Brownlie WR (1983) Flow depth in sand-bed channels. J Hydraul Eng 109(7):959–990

    Article  Google Scholar 

  • Camenen B, Bayram A, Larson M (2006) Equivalent roughness height for plane bed under steady flow. J Hydraul Eng 132(11):1146–1158

    Article  Google Scholar 

  • Campbell L, McEwan I, Nikora V, Pokrajac D, Gallagher M, Manes C (2005) Bed-load effects on hydrodynamics of rough-bed open-channel flows. J Hydraul Eng 131(7):576–585

    Article  Google Scholar 

  • Carbonneau PE, Bergeron NE (2000) The effect of bedload transport on mean and turbulent flow properties. Geomorphology 35(3-4):267–278

    Article  Google Scholar 

  • Chang CC, Lin CJ (2011) LIBSVM: A library for support vector machines. ACM Trans Intell Syst Technol 2(3):27:1–27:27. software available at http://www.csie.ntu.edu.tw/cjlin/libsvm

    Article  Google Scholar 

  • Dogan E, Tripathi S, Lyn DA, Govindaraju RS (2009) From flumes to rivers: Can sediment transport in natural alluvial channels be predicted from observations at the laboratory scale? Water Resour Res 45(8):W08,433

    Google Scholar 

  • Einstein HA, Barbarossa NL (1952) River channel roughness. Trans, ASCE 117:1121–1132

    Google Scholar 

  • Engelund F, Hansen E (1967) A monograph on sediment transport in Alluvial Streams. Teknisk Forlag, Copenhagen, Denmark

    Google Scholar 

  • Ferguson R (2007) Flow resistance equations for gravel- and boulder-bed streams. Water Resour Res 43(5):W05,427

    Google Scholar 

  • Garcia MH (2008) Sediment transport and morphodynamics. In: Garcia MH (ed) ASCE Manuals and Reports on Engineering No. 110, Sedimentation Engineering Processes, Measurements, Modeling and Practice, ASCE, Virginia, U.S.A., chap 2, pp 21–163

  • Geisser S (1993) Predictive inference. Chapman and Hall, New York

    Book  Google Scholar 

  • Giustolisi O (2004) Using genetic programming to determine Chezy resistance coefficient in corrugated channels. J Hydroinform 6(3):157–173

    Google Scholar 

  • Hagan MT, Menhaj MB (1994) Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993

    Article  Google Scholar 

  • Haykin S (2009) Neural networks and learning machines, 3rd edn. Prentice Hall, New Jersey

    Google Scholar 

  • Hey RD (1979) Flow resistance in gravel-bed rivers. J Hydraul Div 105(4):365–379

    Google Scholar 

  • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366

    Article  Google Scholar 

  • Iliadis L, Maris F, Tachos S (2011) Soft computing techniques toward modeling the water supplies of Cyprus. Neural Netw 24(8):836–841

    Article  Google Scholar 

  • Jang JSR (1993) ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685

    Article  Google Scholar 

  • Jarrett RD (1984) Hydraulics of high-gradient streams. J Hydraul Eng 110(11):1519–1539

    Article  Google Scholar 

  • Karim F (1995) Bed configuration and hydraulic resistance in alluvial-channel flows. J Hydraul Eng 121(1):15–25

    Article  Google Scholar 

  • Keulegan GH (1938) Laws of turbulent flow in open channels. J Res Nat Bur Stand 21:707–741

    Article  Google Scholar 

  • Khullar NK, Kothyari UC, Ranga Raju KG (2007) Effect of wash load on flow resistance. J Hydraul Res 45(4):497–504

    Article  Google Scholar 

  • Kitsikoudis V, Hrissanthou V (2013) Artificial neural network modeling of the fractional transport rate of bed-load in gravel-bed streams. In: Proceedings of the 6th International Conference on Water Resources and Environment Research. Koblenz, Germany, pp 231–255

  • Kitsikoudis V, Sidiropoulos E, Hrissanthou V (2014a) Assessment of sediment transport approaches for sand-bed rivers by means of machine learning. Hydrol Sci J doi:10.1080/02626667.2014.909599. (accepted for publication)

  • Kitsikoudis V, Sidiropoulos E, Hrissanthou V (2014b) Machine learning utilization for bed load transport in gravel-bed rivers. Water Resour Manag 28(11):3727–3743

    Article  Google Scholar 

  • Kitsikoudis V, Sidiropoulos E, Iliadis L, Hrissanthou V (2014c) Calculation of sediment transport capacity of flowing water in rivers with machine learning. In: Proceedings of the 11th International Conference on Hydroscience and Engineering, Hamburg, Germany

  • Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge, MA

    Google Scholar 

  • Lamb MP, Dietrich WE, Venditti JG (2008) Is the critical Shields stress for incipient motion dependent on channel-bed slope? J Geophys Res 113:F02,008

    Google Scholar 

  • Lyn DA (1991) Resistance in flat-bed sediment-laden flows. J Hydraul Eng 117(1):94–114

    Article  Google Scholar 

  • Maier HR, Jain A, Dandy GC, Sudheer KP (2010) Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions. Environ Model Softw 25(8):891–909

    Article  Google Scholar 

  • Morvan H, Knight D, Wright N, Tang X, Crossley A (2008) The concept of roughness in fluvial hydraulics and its formulation in 1D, 2D and 3D numerical simulation models. J Hydraul Res 46(2):191–208

    Article  Google Scholar 

  • Muller A (1973) Turbulence measurements over a movable bed with sediment transport by laser anemometry. In: Proceedings of the 15th IAHR Congress, Istanbul, Turkey, vol 1, pp A7–1–A7–7

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, Part I - A discussion of principles. J Hydrol 10(3):282–290

    Article  Google Scholar 

  • Nikora V, Goring D (2000) Flow turbulence over fixed and weakly mobile gravel beds. J Hydraul Eng 126(9):679–690

    Article  Google Scholar 

  • Parker G, Anderson AG (1977) Basic principles of river hydraulics. J Hydraul Div 103(9):1077–1087

    Google Scholar 

  • Pitlick J (1992) Flow resistance under conditions of intense gravel transport. Water Resour Res 28(3):891–903

    Article  Google Scholar 

  • Pyle D (1999) Data preparation for data mining. Morgan Kaufmann, San Francisco, California

    Google Scholar 

  • Recking A (2009) Theoretical development on the effects of changing flow hydraulics on incipient bed load motion. Water Resour Res 45(4):W04,401

    Google Scholar 

  • Recking A, Frey P, Paquier A, Belleudy P, Champagne JY (2008) Feedback between bed load transport and flow resistance in gravel and cobble bed rivers. Water Resour Res 44(5):W05,412

    Google Scholar 

  • Rickenmann D, Recking A (2011) Evaluation of flow resistance in gravel-bed rivers through a large field data set. Water Resour Res 47(7):W07,538

    Google Scholar 

  • Rouse H (1965) Critical analysis of open-channel resistance. J Hydraul Div 91(HY4):1–25

    Google Scholar 

  • Searson DP (2009) GPTIPS; Genetic Programming and Symbolic Regression for MATLAB, User Guide

  • Shrestha RR, Simonovic SP (2010) Fuzzy nonlinear regression approach to stage-discharge analyses: Case study. J Hydrol Eng 15(1):49–56

    Article  Google Scholar 

  • Shvidchenko AB, Pender G (2000) Flume study of the effect of relative depth on the incipient motion of coarse uniform sediments. Water Resour Res 36(2):619–628

    Article  Google Scholar 

  • Smart GM, Jaeggi MNR (1983) Sediment Transport on Steep Slopes. Mitteilung der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich, Nr 64, Zurich, Switzerland

  • Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14(3):199–222

    Article  Google Scholar 

  • Strickler A (1923) Beiträge zur Frage der Geschwindigkeitsformel und der Rauhigkeitszahlen für Ströme, Kanäle und Geschlossene Leitungen, Mitt. 16, Eidg. Amt für Wasserwirtsch., Bern, Switzerland

    Google Scholar 

  • Sumer BM, Kozakiewicz A, Fredsoe J, Deigaard R (1996) Velocity and concentration profiles in sheet-flow layer of movable bed. J Hydraul Eng 122(10):549–558

    Article  Google Scholar 

  • van Ingen C (1981) Observations in a sediment-laden flow by use of laser-doppler velocimetry. Tech. Rep. KH-R-42, W.M. Keck Laboratory of Hydraulics and Water Resources. California Institute of Technology, Pasadena, California

    Google Scholar 

  • van Rijn LC (1984) Sediment transport, part III: Bed forms and alluvial roughness. J Hydraul Eng 110(12):1733–1754

    Article  Google Scholar 

  • Vanoni VA (2006) ASCE Manuals and Reports on Engineering No. 54, Sedimentation Engineering. ASCE, Virginia, U.S.A

    Google Scholar 

  • Vanoni VA, Nomicos GN (1960) Resistance properties of sediment-laden streams. Trans ASCE 125(1):1140–1167

    Google Scholar 

  • Vapnik V (1995) The Nature of Statistical Learning Theory. Springer, New York

    Book  Google Scholar 

  • Wang X, Qian N (1989) Turbulence characteristics of sediment-laden flow. J Hydraul Eng 115(6):781–800

    Article  Google Scholar 

  • Werbos PJ (1990) Backpropagation through time: What it does and how to do it. Proc IEEE 78(10):1550–1560

    Article  Google Scholar 

  • Whiting PJ, Dietrich WE (1990) Boundary shear stress and roughness over mobile alluvial beds. J Hydraul Eng 116(12):1495–1511

    Article  Google Scholar 

  • Wilson KC (1987) Analysis of bed-load motion at high shear stress. J Hydraul Eng 113(1):97–103

    Article  Google Scholar 

  • Witten IH, Frank E, Hall MA (2011) Data mining: practical machine learning tools and techniques, 3rd edn. Morgan Kaufmann, Burlington, MA

    Google Scholar 

  • Wu W, Wang SSY (1999) Movable bed roughness in alluvial rivers. J Hydraul Eng 125(12):1309–1312

    Article  Google Scholar 

  • Yang CT (2003) Sediment Transport: Theory and Practice. Original edition McGraw-Hill; 1996. Reprint edition by Krieger Publication Company, Malabar, FL

  • Yen BC (2002) Open channel flow resistance. J Hydraul Eng 128(1):20–39

    Article  Google Scholar 

  • Yu G, Lim SY (2003) Modified Manning formula for flow in alluvial channels with sand-beds. J Hydraul Res 41(6):597–608

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to an Associate Editor and two anonymous Reviewers for their constructive and insightful comments and suggestions, which improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasileios Kitsikoudis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitsikoudis, V., Sidiropoulos, E., Iliadis, L. et al. A Machine Learning Approach for the Mean Flow Velocity Prediction in Alluvial Channels. Water Resour Manage 29, 4379–4395 (2015). https://doi.org/10.1007/s11269-015-1065-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-015-1065-0

Keywords

Navigation