Water Resources Management

, Volume 29, Issue 10, pp 3841–3861 | Cite as

OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems

  • T. Fowe
  • I. Nouiri
  • B. Ibrahim
  • H. Karambiri
  • J. E. Paturel


An approach based on a real coded Genetic Algorithm (GA) model was used to optimize water allocation from a coupled reservoir-groundwater system. The GA model considered five objectives: satisfying irrigation water demand, safeguarding water storage for the environment and fisheries, maximizing crop water productivity, protecting the downstream ecosystem against elevated soil salinity and hydromorphic issues, and reducing the unit cost of water. The model constraints are based on hydraulic and storage continuity requirements. The objectives and constraints were combined into a fitness function using a weighting factor and the penalty approaches. The decision variable was water allocation for irrigation demand from reservoir and groundwater. The irrigation water demands around the reservoir were estimated using the Food and Agriculture Organization (FAO) Penman-Monteith method in the water evaluation and planning (WEAP) software. The deterministic GA model was coded using Visual Basic 6 and a new tool for irrigation water management optimization (OPTIWAM) was developed. To validate the applicability of the deterministic model for the operation of coupled reservoir-groundwater systems, the Boura reservoir (in the center-west region of Burkina Faso) and the downstream irrigation area were used as a case study. Results show that the proposed methodology and the developed tool are effective and useful for determining optimal allocation of irrigation water. Furthermore, the methodology and tool can improve water resources management of coupled reservoir-groundwater systems.


Irrigation Water resources Allocation Optimization Genetic algorithms 



This research was carried out through the Consultative Group on International Agricultural Research (CGIAR) Challenge Program on Water and Food (CPWF), which is funded by the UK Department for International Development (DFID), the European Commission (EC), the International Fund for Agricultural Development (IFAD), and the Swiss Agency for Development and Cooperation (SDC). This work is a contribution to the «Integrated Management of Small Reservoirs in the Volta Basin» sub-project, leaded by the “Centre de Coopération Internationale en Recherche Agronomique pour le Développement” (CIRAD, Montpellier, France). Also, the first author wishes to express his grateful thanks to the National Institute of Agronomy of Tunisia (INAT) for the opportunity afforded for the realization of this study.


  1. Ahmed J, Sarma A (2005) Genetic algorithm for optimal operating policy of a multipurpose reservoir. Water Resour Manag 19:145–161. doi: 10.1007/s11269-005-2704-7 CrossRefGoogle Scholar
  2. Andreini M, Schuetz T, Senzanje A, et al. (2009) CPWF project number 46 report: Small multi-purpose reservoir ensemble planning. CGIAR Challenge Program on Water and Food Project Report seriesGoogle Scholar
  3. Azamathulla H, Wu F, Ab A et al (2008) Comparison between genetic algorithm and linear programming approach for real time operation. J Hydro Environ Res 2:172–181. doi: 10.1016/j.jher.2008.10.001 CrossRefGoogle Scholar
  4. Boelee E, Cecchi P, Koné A (2009) Health impacts of small reservoirs in Burkina Faso. IWMI Working Paper 136. International Water Management Institute, Colombo, Sri Lanka. doi: 10.3910/2009.202.
  5. Cai W, Zhang L, Zhu X et al (2013) Optimized reservoir operation to balance human and environmental requirements: a case study for the three Gorges and Gezhouba Dams, Yangtze River basin, China. Ecol Inform 18:40–48. doi: 10.1016/j.ecoinf.2013.06.009 CrossRefGoogle Scholar
  6. Cai X, Asce M, Mckinney DC et al (2003) Integrated hydrologic-agronomic-economic model for River Basin management. J Water Resour Plan Manag 129:4–17CrossRefGoogle Scholar
  7. Celeste AB, Billib M (2009) Evaluation of stochastic reservoir operation optimization models. Adv Water Resour 32:1429–1443. doi: 10.1016/j.advwatres.2009.06.008 CrossRefGoogle Scholar
  8. Chang L, Chang F, Wang K, Dai S (2010) Constrained genetic algorithms for optimizing multi-use reservoir operation. J Hydrol 390:66–74. doi: 10.1016/j.jhydrol.2010.06.031 CrossRefGoogle Scholar
  9. Chen Q, Chen D, Li R et al (2013a) Adapting the operation of two cascaded reservoirs for ecological flow requirement of a de-watered river channel due to diversion-type hydropower stations. Ecol Model 252:266–272. doi: 10.1016/j.ecolmodel.2012.03.008 CrossRefGoogle Scholar
  10. Chen YW, Chang LC, Huang CW, Chu HJ (2013b) Applying genetic algorithm and neural network to the conjunctive use of surface and subsurface water. Water Resour Manag 27:4731–4757. doi: 10.1007/s11269-013-0418-9 CrossRefGoogle Scholar
  11. Consoli S, Matarazzo B, Pappalardo N (2007) Operating rules of an irrigation purposes reservoir using multi-objective optimization. Water Resour Manag 22:551–564. doi: 10.1007/s11269-007-9177-9 CrossRefGoogle Scholar
  12. De Fraiture C, Kouali GN, Sally H, Kabre P (2014) Pirates or pioneers? Unplanned irrigation around small reservoirs in Burkina Faso. Agric Water Manag 131:212–220. doi: 10.1016/j.agwat.2013.07.001 CrossRefGoogle Scholar
  13. Descroix L, Mahé G, Lebel T et al (2009) Spatio-temporal variability of hydrological regimes around the boundaries between Sahelian and Sudanian areas of West Africa: a synthesis. J Hydrol 375:90–102. doi: 10.1016/j.jhydrol.2008.12.012 CrossRefGoogle Scholar
  14. Droubi A, Al-Sibai M, Abdallah A, Zahra S, Obeissi M, Wolfer J, Huber M, Hennings V, Schelkes KA, (2008) Decision support system (DSS) for water resources management, -design and results from a pilot study in Syria. In: Zereini F, Hötzl H (Eds.) Climatic changes and water resources in the Middle East and North Africa. Springer, p 199–225Google Scholar
  15. Elferchichi A, Gharsallah O, Nouiri I et al (2009) The genetic algorithm approach for identifying the optimal operation of a multi-reservoirs on-demand irrigation system. Biosyst Eng 102:334–344. doi: 10.1016/j.biosystemseng.2008.12.009 CrossRefGoogle Scholar
  16. Fallah-Mehdipour E, Bozorg Haddad O, Alimohammadi S, Loáiciga HA (2015) Development of real-time conjunctive use operation RULES for aquifer-reservoir systems. Water Resour Manag 29:1887–1906. doi: 10.1007/s11269-015-0917-y CrossRefGoogle Scholar
  17. Fang XZ, Voron B, Bocquillon G (1989) Programmation dynamique: application à la gestion d’une retenue pour l’irrigation. Hydrol Sci J 34:415–424CrossRefGoogle Scholar
  18. FAOSTAT (2013) FAOSTAT database. Rome, ItalyGoogle Scholar
  19. Faulkner JW, Steenhuis T, van de Giesen N et al (2008) Water use and productivity of two small reservoir irrigation schemes in Ghana’s Upper East Region. Irrig Drain 57:151–163. doi: 10.1002/ird CrossRefGoogle Scholar
  20. Favreau G, Cappelaere B, Massuel S et al (2009) Land clearing, climate variability, and water resources increase in semiarid southwest Niger: a review. Water Resour Res 45:W00A16. doi: 10.1029/2007WR006785 CrossRefGoogle Scholar
  21. Forrest S (1993) Genetic algorithms: principles of natural selection applied to computation. Sci New Ser 261:872–878Google Scholar
  22. Fowe T, Karambiri H, Paturel J-E et al (2015) Water balance of small reservoirs in the Volta basin: a case study of Boura reservoir in Burkina Faso. Agric Water Manag 152:99–109CrossRefGoogle Scholar
  23. Gartley ML, George B, Davidson B, et al. (2009) Hydro-economic modelling of the upper Bhima catchment, India. 18th World IMACS / MODSIM Congr. Cairns, Australia, pp 3831–3837Google Scholar
  24. Giordano M (2006) Agricultural groundwater use and rural livelihoods in sub-Saharan Africa: a first-cut assessment. Hydrogeol J 14:310–318. doi: 10.1007/s10040-005-0479-9 CrossRefGoogle Scholar
  25. Giuliani M, Galelli S, Soncini-Sessa R (2014) A dimensionality reduction approach for many-objective Markov decision processes: application to a water reservoir operation problem. Environ Model Softw 57:101–114. doi: 10.1016/j.envsoft.2014.02.011 CrossRefGoogle Scholar
  26. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Publishing Co., Inc., ReadingGoogle Scholar
  27. Goldberg DE, Deb K (1991) A comparative analysis of selection used in genetic algorithms schemes. Urbana 51:61801–62996Google Scholar
  28. Holland JH (1975) Adaptation in natural and artificial systems. The University of Michigan Press, Ann ArborGoogle Scholar
  29. Igbadun HE, Mahoo HF, Tarimo AKPR, Salim BA (2006) Crop water productivity of an irrigated maize crop in Mkoji sub-catchment of the Great Ruaha River Basin, Tanzania. Agric Water Manag 85:141–150. doi: 10.1016/j.agwat.2006.04.003 CrossRefGoogle Scholar
  30. Jian-xia C, Qiang H, Yi-min W (2005) Genetic algorithms for optimal reservoir dispatching. Water Resour Manag 19:321–331. doi: 10.1007/s11269-005-3018-5 CrossRefGoogle Scholar
  31. Jothiprakash V, Shanthi G (2009) Comparison of policies derived from stochastic dynamic programming and genetic algorithm models. Water Resour Manag 23:1563–1580. doi: 10.1007/s11269-008-9341-x CrossRefGoogle Scholar
  32. Jothiprakash V, Shanthi G (2006) Single reservoir operating policies using genetic algorithm. Water Resour Manag 20:917–929. doi: 10.1007/s11269-005-9014-y CrossRefGoogle Scholar
  33. Jothiprakash V, Shanthi G, Arunkumar R (2011) Development of operational policy for a multi-reservoir system in India using genetic algorithm. Water Resour Manag 25:2405–2423. doi: 10.1007/s11269-011-9815-0 CrossRefGoogle Scholar
  34. Karambiri H, Garcia Galiano SG, Giraldo JD et al (2011) Assessing the impact of climate variability and climate change on runoff in West Africa: the case of Senegal and Nakambe River basins. Atmos Sci Lett 12:109–115. doi: 10.1002/asl.317 CrossRefGoogle Scholar
  35. Kumar DN, Raju KS, Ashok B (2006) Optimal reservoir operation for irrigation of multiple crops using genetic algorithms. J Irrig Drain Eng 132:123–129CrossRefGoogle Scholar
  36. Labadie JW (2004) Optimal operation of Multireservoir systems: State-of-the-art review. J Water Resour Plan Manag 130:93–111CrossRefGoogle Scholar
  37. Laube W, Awo M, Schraven B (2008) Erratic rains and erratic markets: Environmental change, economic globalisation and the expansion of shallow groundwater irrigation in West Africa. ZEF Working Paper Series 30. Center for Development Research, University of BonnGoogle Scholar
  38. Levy J, Xu Y (2012) Review: groundwater management and groundwater / surface-water interaction in the context of South African water policy. Hydrogeol J 20:205–226. doi: 10.1007/s10040-011-0776-4 CrossRefGoogle Scholar
  39. Li X-G, Wei X (2008) An improved genetic algorithm-simulated annealing hybrid algorithm for the optimization of multiple reservoirs. Water Resour Manag 22:1031–1049. doi: 10.1007/s11269-007-9209-5 CrossRefGoogle Scholar
  40. Louati MH, Benabdallah S, Lebdi F, Milutin D (2011) Application of a genetic algorithm for the optimization of a complex reservoir system in Tunisia. Water Resour Manag 25:2387–2404. doi: 10.1007/s11269-011-9814-1 CrossRefGoogle Scholar
  41. MAHRH (2003) Action plan for water resources integrated management (PAGIRE). Ministère de l’Agriculture, de l’Hydraulique et des Ressources Halieutiques, Ouagadougou, Burkina FasoGoogle Scholar
  42. Mdemu MV (2008) Water productivity in medium and small reservoirs in the Upper East Region (UER) of Ghana. Ecology and Development Series N° 59Google Scholar
  43. Mdemu MV, Rodgers C, Vlek PLG, Borgadi JJ (2009) Water productivity (WP) in reservoir irrigated schemes in the upper east region (UER) of Ghana. Phys Chem Earth, Parts A/B/C 34:324–328. doi: 10.1016/j.pce.2008.08.006 CrossRefGoogle Scholar
  44. Momtahen S, Dariane AB (2007) Direct search approaches using genetic algorithms for optimization of water reservoir operating policies. J Water Resour Plan Manag 133:202–209CrossRefGoogle Scholar
  45. Moradi-Jalal M, Bozorg Haddad O, Karney BW, Mariño MA (2007) Reservoir operation in assigning optimal multi-crop irrigation areas. Agric Water Manag 90:149–159. doi: 10.1016/j.agwat.2007.02.013 CrossRefGoogle Scholar
  46. Noori M, Othman F, Sharifi MB, Heydari M (2013) Multiobjective operation optimization of reservoirs using genetic algorithm (Case Study: Ostoor and Pirtaghi Reservoirs in Ghezel Ozan Watershed). Int Proc Chem Biol Environ Eng 51:49–54. doi: 10.7763/IPCBEE Google Scholar
  47. Nouiri I (2014) Multi-objective tool to optimize the water resources management using genetic algorithm and the Pareto optimality concept. Water Resour Manag 28:1–17. doi: 10.1007/s11269-014-0643-x CrossRefGoogle Scholar
  48. Odada OE (2006) Freshwater resources of Africa: major issues and priorities. Glob Water News GWSP 3:1–12Google Scholar
  49. Owor M, Taylor R, Mukwaya C (2011) Groundwater / surface-water interactions on deeply weathered surfaces of low relief: evidence from Lakes Victoria and Kyoga, Uganda. Hydrogeol J 19:1403–1420. doi: 10.1007/s10040-011-0779-1 CrossRefGoogle Scholar
  50. Pabiot F (1999) Optimisation de la gestion d’un barrage collinaire en zone semi-aride: Projet MERGUSIE. Mémoire fin d’étude, ENSA Rennes (France), IRD (France) et IRESA (Tunisie)Google Scholar
  51. Pilpayeh A, Jahromi HM, Raoof M (2010) Optimization of multipurpose serial reservoir systems operation in deluge, normal rainfall, and drought conditions (A case study of Aras River Basin, Iran). J Food Agric Environ 8:1004–1009Google Scholar
  52. Playán E, Mateos L (2006) Modernization and optimization of irrigation systems to increase water productivity. Agric Water Manag 80:100–116. doi: 10.1016/j.agwat.2005.07.007 CrossRefGoogle Scholar
  53. Rani D, Madalena M (2010) Simulation – optimization modeling: a survey and potential application in reservoir systems operation. Water Resour Manag 24:1107–1138. doi: 10.1007/s11269-009-9488-0 CrossRefGoogle Scholar
  54. Rao NH, Sarma PBS, Chander S (1988) Irrigation scheduling under a limited water supply. Agric Water Manag 15:165–175CrossRefGoogle Scholar
  55. Reddy JM, Kumar ND (2006) Optimal reservoir operation using multi-objective evolutionary algorithm. Water Resour Manag 20:861–878. doi: 10.1007/s11269-005-9011-1 CrossRefGoogle Scholar
  56. Regulwar DG, Kamodkar RU (2010) Derivation of multipurpose single reservoir release policies with fuzzy constraints. J Water Resour Prot 2:1030–1041. doi: 10.4236/jwarp.2010.212123 CrossRefGoogle Scholar
  57. Rezapour Tabari MM, Soltani J (2013) Multi-objective optimal model for conjunctive use management using SGAs and NSGA-II models. Water Resour Manag 27:37–53. doi: 10.1007/s11269-012-0153-7 CrossRefGoogle Scholar
  58. Safavi HR, Darzi F, Mariño MA (2010) Simulation-optimization modeling of conjunctive use of surface water and groundwater. Water Resour Manag 24:1965–1988. doi: 10.1007/s11269-009-9533-z CrossRefGoogle Scholar
  59. Safavi HR, Esmikhani M (2013) Conjunctive use of surface water and groundwater: application of support vector MACHINES (SVMs) and genetic algorithms. Water Resour Manag 27:2623–2644. doi: 10.1007/s11269-013-0307-2 CrossRefGoogle Scholar
  60. Singh A (2012) An overview of the optimization modelling applications. J Hydrol 466–467:167–182. doi: 10.1016/j.jhydrol.2012.08.004 CrossRefGoogle Scholar
  61. Some L, Dembele Y, Ouedraogo M, et al. (2006) Analysis of crop water use and soil water balance in Burkina Faso using CROPWAT. CEEPA Discuss. Pap. n°36. CEEPA, University of Pretoria, University of PretoriaGoogle Scholar
  62. Suiadee W, Tingsanchali T (2007) A combined simulation – genetic algorithm optimization model for optimal rule curves of a reservoir: a case study of the Nam Oon Irrigation Project, Thailand. Hydrol Process 21:3211–3225. doi: 10.1002/hyp CrossRefGoogle Scholar
  63. Tendai S (2005) Estimation of small reservoir storage capacities in Limpopo River Basin using Geographical Information Systems (GIS) and remotely sensed surface areas: A case of Mzingwane catchmentGoogle Scholar
  64. Tran L, Schilizzi S, Chalak M, Kingwell R (2011a) Managing multiple-use resources: Optimizing reservoir water use for irrigation and fisheries. 55th Annual AARES National Conference, Melbourne, VictoriaGoogle Scholar
  65. Tran LD, Schilizzi S, Chalak M, Kingwell R (2011b) Optimizing competitive uses of water for irrigation and fisheries. Agric Water Manag 101:42–51. doi: 10.1016/j.agwat.2011.08.025 CrossRefGoogle Scholar
  66. Tuong TP, Bouman BAM (2003) Rice production in water-scarce environments. In: Kijne JW, Barker R, Molden D (eds) Water productivity in agriculture: Limits and opportunities for improvement. CABI, Wallingford, pp 53–67CrossRefGoogle Scholar
  67. UNEP (2002) State of the environment and policy retrospective: 1972–2002. In: Global environment outlook 3: Past, present and future retrospectives, pp 150–179Google Scholar
  68. USBR and USDA (2001) Water measurement manual. A water research technical Publication, Third Edit. 317Google Scholar
  69. Venot J, Cecchi P (2011) Valeurs d’usage ou performances techniques: comment apprécier le rôle des petits barrages en Afrique subsaharienne? Cah Agric 20:112–117Google Scholar
  70. Venot J, Krishnan J (2011) Discursive framing: debates over small reservoirs in the rural. Water Altern 4:316–324Google Scholar
  71. Villholth KG (2013) Groundwater irrigation for smallholders in Sub-Saharan Africa – a synthesis of current knowledge to guide sustainable outcomes. Water Int 38:369–391. doi: 10.1080/02508060.2013.821644 CrossRefGoogle Scholar
  72. Wang K, Chang L, Chang F (2011) Multi-tier interactive genetic algorithms for the optimization of long-term reservoir operation. Adv Water Resour 34:1343–1351. doi: 10.1016/j.advwatres.2011.07.004 CrossRefGoogle Scholar
  73. Yang C-C, Chang L-C, Chen C-S, Yeh M-S (2009) Multi-objective planning for conjunctive use of surface and subsurface water using genetic algorithm and dynamics programming. Water Resour Manag 23:417–437. doi: 10.1007/s11269-008-9281-5 CrossRefGoogle Scholar
  74. Yang K, Zheng J, Yang M et al (2013) Adaptive genetic algorithm for daily optimal operation of cascade reservoirs and its improvement strategy. Water Resour Manag 27:4209–4235. doi: 10.1007/s11269-013-0403-3 CrossRefGoogle Scholar
  75. Yeh WW-G (1985) Reservoir management and operations models. Water Resour Res 21:1797–1818CrossRefGoogle Scholar
  76. Zahraie B, Hosseini SM (2009) Development of reservoir operation policies considering variable agricultural water demands. Expert Syst Appl 36:4980–4987. doi: 10.1016/j.eswa.2008.06.135 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • T. Fowe
    • 1
  • I. Nouiri
    • 2
  • B. Ibrahim
    • 3
  • H. Karambiri
    • 1
  • J. E. Paturel
    • 1
    • 4
  1. 1.Hydrology and Water Resources LaboratoryInternational Institute for Water and Environmental Engineering (2iE)Ouagadougou 01Burkina Faso
  2. 2.National Institute of Agronomy of TunisiaTunisTunisia
  3. 3.West African Science Service Center on Climate Change and Adapted Land Use (WASCAL)OuagadougouBurkina Faso
  4. 4.IRD-HydroSciences MontpellierUniversité Montpellier 2Montpellier Cedex 5France

Personalised recommendations