Water Resources Management

, Volume 27, Issue 10, pp 3647–3662 | Cite as

Assessment of Future Climate Change Impacts on Water Resources of Upper Sind River Basin, India Using SWAT Model

  • Boini NarsimluEmail author
  • Ashvin K. Gosain
  • Baghu R. Chahar


A study has been conducted to assess future climate change impacts on water resources of the Upper Sind River Basin using Soil Water Assessment Tool. Sequential uncertainty fitting (SUFI-2) algorithm has been applied for model calibration and uncertainty analysis. Monthly observed stream flows matched well with simulated flows with respect to p-factor, d-factor, Correlation coefficient and Nash-Sutcliffe coefficients with values of 0.73, 0.42, 0.82, 0.80 during calibration (1992–2000) and 0.42, 0.36, 0.96, 0.93 during validation (2001–2005) respectively. PRECIS generated outputs under IPCC A1B Scenarios for Indian conditions corresponding to the baseline (1961–1990), midcentury (2021–2050) and endcentury (2071–2098); extracted by Indian Institute of Tropical Meteorology, Pune (India) have been used for the study. It has been found from the model results that the average annual streamflow could increase by 16.4 % for the midcentury and a significant increase of 93.5 % by the endcentury. The results also indicate that streamflow may rise drastically in monsoon season, but will decrease in non-monsoon season due to the projected future climate change.


Climate change Streamflow SWAT model PRECIS Calibration Validation 



Thanks are due to the Hadley Centre for Climate Prediction and Research, UK Meteorological Office, for making available regional model-PRECIS. Support of the PRECIS simulation datasets is provided by the Indian Institute of Tropical Meteorology, Pune India.


  1. Abbaspour KC, Johnson A, van Genuchten MT (2004) Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J 3(4):1340–1352Google Scholar
  2. Abbaspour KC, Yang J, Maximov I, Siber R, Bogner K, Mieleitner J, Zobrist J, Srinivasan R (2007) Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J Hydrol 333:413–430. doi: 10.1016/j.bbr.2011.03.031 CrossRefGoogle Scholar
  3. Abbaspour KC, Faramarzi M, Ghasemi SS, Yang H (2009) Assessing the impact of climate change on water resources in Iran. Water Resour Res 45:W10434. doi: 10.1029/2008WR007615
  4. Arnold JG, Allen PM, Bernhardt G (1993) A comprehensive surface groundwater flow model. J Hydrol 142:47–69CrossRefGoogle Scholar
  5. Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment: Part I Model development. J Am Water Resour Assoc 34(1):73–89CrossRefGoogle Scholar
  6. Arnold JG, Muttiah RS, Srinivasan R, Allen PM (2000) Regional estimation of baseflow and groundwater recharge in the Upper Mississippi River basin. J Hydrol 227(1–4):21–40CrossRefGoogle Scholar
  7. ASCE (1993) Criteria for evaluation of watershed models. J Irrig Drainage Eng 119(3):429–442CrossRefGoogle Scholar
  8. Bekele EG, Knapp HV (2010) Watershed modeling to assessing impacts of potential climate change on water supply availability. Water Resour Manage 24:3299–3320. doi: 10.1007/s11269-010-9607-y CrossRefGoogle Scholar
  9. Borah DK, Bera M (2003) Watershed scale hydrologic and nonpoint source pollution models: review of mathematical bases. Trans ASAE 46(6):1553–1566Google Scholar
  10. Di Luzio M, Arnold JG (2004) Formulation of a hybrid calibration approach for a physically based distributed model with NEXRAD data input. J Hydrol 298(1–4):136–154. doi: 10.1016/j.jhydrol.2004.03.034
  11. Diwan PL (2002) Vagaries of monsoon: Water crisis and its management. Press release (September 20, 2002). Government of India, Press Information Bureau, New DelhiGoogle Scholar
  12. Eckhardt K, Arnold JG (2001) Automatic calibration of a distributed catchment model. J Hydrol 251(1–2):103–109. doi: 10.1016/S0022-1694(01)00429-2 CrossRefGoogle Scholar
  13. FAO (1976) A framework for land evaluation. Food and Agriculture Organization, Rome, Soil bull. No. 32Google Scholar
  14. Gassman PW, Reyes MR, Green CH, Arnold JG (2007) The Soil and Water Assessment Tool: historical development, applications and future research directions. Trans ASABE 50(4):1211–1250Google Scholar
  15. Ghaffari G, Keesstra S, Ghodousi J, Ahamadi H (2010) SWAT simulated hydrological impact of landuse change in Zanjanrood basin, Northwest Iran. Hydrol Process 24:892–903. doi: 10.1002/hyp.7530 CrossRefGoogle Scholar
  16. Githui F, Wilson G, Francis M, Willy B (2009) Climate change impact on SWAT simulated streamflow in western Kenya. Int J of Climatol 29:1823–1834. doi: 10.1002/joc.1828 CrossRefGoogle Scholar
  17. Gleick PH (1989) Climate change, hydrology and water resources. Rev of Geophy 27(3):329–344. doi: 10.1029/RG027i003p00329 CrossRefGoogle Scholar
  18. Gordon VD, Nathan ES, Apponi AJ, McCarthy MC, Thaddeus P, Botschwina P (2000) Structures of the linear silicon carbides SiC4 and Si C6: isotopic substitution and Ab Initio theory. J Chem Phys 113:5311CrossRefGoogle Scholar
  19. Gosain AK, Rao S, Basuray D (2006) Climate change impact assessment on hydrology of Indian River basins. Curr Sci 90(3):346–353Google Scholar
  20. Gupta HV, Sorooshian S, Yapo PO (1999) Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. J Hydrologic Eng 4(2):135–143Google Scholar
  21. IPCC (2000) Special report emissions scenarios: summary for policymakers. A Special Report of IPCC Working Group III. Published for the Intergovernmental Panel on Climate Change. pp. 21Google Scholar
  22. IPCC (2007a) Climate change 2007: the physical science basis; Summary for policymakers. Contribution of the Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 17 April 2007, 18 pGoogle Scholar
  23. IPCC (2007b) Summary for Policymakers. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Eds., Cambridge University Press, Cambridge, UK and New York, USAGoogle Scholar
  24. IPCC (2007c) Climate Change 2007: Climate change impacts, adaptation and vulnerability – Summary for Policymakers. Contribution of the Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 13 April 2007, 22 pGoogle Scholar
  25. Jha M, Pan Z, Takle ES, Gu R (2004) Impacts of climate change on streamflow in the Upper Mississippi River Basin: a regional climate model perspective. J of Geophy Res 109:D09105. doi: 10.1029/2003JD003686
  26. Jones RG, Noguer M, Hassell DC, Hudson D, Wilson SS, Jenkins GJ, Mitchell JFB (2004) Generating high resolution climate change scenarios using PRECIS. Met Office Hadley Centre, Exeter, 40ppGoogle Scholar
  27. Jyrkama MI, Sykes JF (2007) The impact of climate change on spatially varying groundwater recharge in the Grand River watershed (Ontario). J Hydrol 338(3–4):237–250. doi: 10.1016/j.jhydrol.2007.02.036 CrossRefGoogle Scholar
  28. Kalin L, Govindaraju RS, Hantush MM (2003) Effect of geomorphologic resolution on runoff hydrograph and sediment graph. J Hydrol 276:89–111CrossRefGoogle Scholar
  29. Lenhart T, Eckhardt K, Fohrer N, Frede HG (2002) Comparison of two different approaches of sensitivity analysis. Phy Che Earth 27(9–10):645–654CrossRefGoogle Scholar
  30. Ma X, Xu J, Luo Y, Agarwal SP, Li J (2009) Response of hydrological processes to landcover and climate changes in Kejie watershed, Southwest China. Hydr Procs 23(8):1179–1191. doi: 10.1002/hyp.7233 CrossRefGoogle Scholar
  31. Moriasi DN, Arnold JG, Van Liew MW, Binger RL, Harmel RD, Veith T (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900Google Scholar
  32. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models: Part I. A discussion of principles. J Hydrol 10(3):282–290CrossRefGoogle Scholar
  33. Neitsch SL, Arnold JG, Kiniry J, Srinivasan R, Williams JR (2002) Soil and water assessment tool user manual. Texas Water Resources Institute, College Station, TWRI Report TR-192Google Scholar
  34. Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2005) Soil and Water Assessment Tool (SWAT), theoretical documentation. Blackland Research Center, Grassland, Soil and Water Research Laboratory, Agricultural Research Service, TempleGoogle Scholar
  35. Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2011) Soil and Water Assessment Tool (SWAT), theoretical documentation. Blackland Research Center, Grassland, Soil and Water Research Laboratory, Agricultural Research Service, TempleGoogle Scholar
  36. Praskievicz S, Chang H (2009) A review of hydrological modelling of basin scale climate change and urban development impacts. Pro in Phy Geog 33(5):650–671. doi: 10.1177/0309133309348098 CrossRefGoogle Scholar
  37. Raychaudhuri SP, Agarwal RR, Biswas D, Gupta NR, Thomas PK (1963) Soils of India. Indian Council of Agricultural Research, New DelhiGoogle Scholar
  38. Santhi C, Arnold JG, Williams JR, Dugas WA, Srinivasan R, Hauck LM (2001) Validation of the SWAT model on a large river basin with point and nonpoint sources. J Am Water Res Assoc 37(5):1169–1188. doi: 10.1111/j.1752-1688.2001.tb03630.x CrossRefGoogle Scholar
  39. Shi P, Chen C, Srinivasan R, Zhang X, Cai T, Fang X, Qu S (2011) Evaluating the SWAT model for hydrological modeling in the Xixian watershed and a comparison with the XAJ model. Water Resour Manage 25:2595–2612. doi: 10.1007/s11269-011-9828-8 CrossRefGoogle Scholar
  40. Singh VP, Woolhiser DA (2002) Mathematical modeling of watershed hydrology. J Hydrol Eng 7(4):270–292. doi: 10.1061/(ASCE)1084-0699(2002)7:4(270) CrossRefGoogle Scholar
  41. Srinivasan R, Ramanarayanan TS, Arnold JG, Bednarz ST (1998) Large area hydrologic modeling and assessment: Part II. Model application. J Am Water Resour Assoc 34(1):91–102CrossRefGoogle Scholar
  42. Thapliyal V (1997) Preliminary and final long range forecast for seasonal monsoon rainfall over India. J Arid Environ 36(3):385–403CrossRefGoogle Scholar
  43. Tomar SS, Sinha SB, Gupta RK (1985) Improved land and water management practices for vertisols of Central India. Res Bull, Dep of Soil Sci and Agril. Che, JNKVV, Jabalpur pp.57Google Scholar
  44. van Griensven A, Meixner T, Grunwald S, Bishop T, Diluzio M, Srinivasan R (2006) A Global sensitivity analysis tool for the parameters of multi-variable catchment models. J Hydrol 324(1–4):10–23. doi: 10.1016/j.jhydrol.2005.09.008 CrossRefGoogle Scholar
  45. Veijalainen N, Dubrovin T, Marttunen M, Vehvilainen (2010) Climate change impacts on water resources and lake regulation in the Vuoksi watershed in Finland. Water Resour Manage 24(13):3437–3459. doi: 10.1007/s11269-010-9614-z CrossRefGoogle Scholar
  46. Wang S, Kang S, Zhang L, Li F (2008) Modeling hydrological response to different land use and climate change scenarios in the Zamu River basin of northwest China. Hydrol Proc 22:2502–2510CrossRefGoogle Scholar
  47. Wang Z, Ficklin DL, Zhang Y, Zhang M (2012) Impact of climate change on streamflow in the arid Shiyand river basin of Northwest China. Hydro Procs 26:2733–2744CrossRefGoogle Scholar
  48. White KL, Chaubey I (2005) Sensitivity analysis, calibration, and validations for a multisite and multivariable SWAT model. J Am Water Res Assoc 41(5):1077–1089. doi: 10.1111/j.1752-1688.2005.tb03786.x CrossRefGoogle Scholar
  49. Yang J, Reichert P, Abbaspour KC, Yang H (2008) Comparing uncertainty analysis techniques for a SWAT application to Chaohe Basin in China. J Hydrol 358:1–23. doi: 10.1016/j.jhydrol.2008.05.012 CrossRefGoogle Scholar
  50. Zhang X, Srinivasan R, Debele B, Hao F (2008) Runoff simulation of the headwaters of the Yellow River using the SWAT model with three snowmelt algorithms. J Am Water Res Assoc 44(1):48–61CrossRefGoogle Scholar
  51. Zhang A, Zhang C, Fu G, Wang B, Bao Z, Zheng H (2012) Assessments of impacts of climate change and human activities on runoff with SWAT for the Huifa River Basin Northeast China. Water Resour Manage 26:2199–2217. doi: 10.1007/s11269-012-0010-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Boini Narsimlu
    • 1
    • 2
    Email author
  • Ashvin K. Gosain
    • 1
  • Baghu R. Chahar
    • 1
  1. 1.Department of Civil EngineeringIndian Institute of Technology DelhiNew DelhiIndia
  2. 2.FM & PHT DivisionIndian Grassland and Fodder Research Institute—ICARJhansiIndia

Personalised recommendations