Skip to main content
Log in

Noniterative Implementation of Pressure-Dependent Demands Using the Hydraulic Analysis Engine of EPANET 2

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

To analyze water distribution networks under pressure-deficient conditions, most of the available hydraulic simulators, including EPANET 2, must be either modified by embedding pressure-dependent demands in the governing network equations or run repeatedly with successive adjustments made to specific parameters until a sufficient hydraulic consistency is obtained. This paper presents and discusses a simple technique that implements the square root relationship between the nodal demand and the nodal pressure using EPANET 2 tools and allows a water distribution network with pressure-dependent demands to be solved in a single run of the unmodified snapshot hydraulic analysis engine of EPANET 2. In this technique, artificial strings made up of a flow control valve, a pipe with a check valve, and a reservoir are connected to the demand nodes before running the engine, and the pressure-dependent demands are determined as the flows in the strings. The resistance of the artificial pipes is chosen such that the demands are satisfied in full at a desired nodal pressure. The proposed technique shows reasonable convergence as evidenced by its testing on example networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Ang WH, Jowitt PW (2006) Solution for water distribution systems under pressure-deficient conditions. J Water Resour Plan Manag 13((3):175–182. doi:10.1061/(ASCE)0733-9496(2006)132:3(175)

    Article  Google Scholar 

  • Babu KSJ, Mohan S (2012) Extended period simulation for pressure-deficient water distribution network. J Comput Civ Eng 26(4):498–505. doi:10.1061/(ASCE)CP.1943-5487.0000160

    Article  Google Scholar 

  • Estrada S, González C, Aloid R, Paño J (2009) Improved pressurized pipe network hydraulic solver for applications in irrigation systems. J Irrig Drain Eng 135(4):421–430. doi:10.1061/(ASCE)IR.1943-4774.0000100

    Article  Google Scholar 

  • Fujiwara O, Ganesharajah T (1993) Reliability assessment of water supply systems with storage and distribution networks. Water Resour Res 29(8):2917–2924

    Article  Google Scholar 

  • Gorev NB, Kodzhespirova IF, Kovalenko Y, Prokhorov E, Trapaga G (2012) A method to cope with zero flows in Newton solvers for water distribution systems. J Hydraul Eng 139(4):456–459. doi:10.1061/(ASCE)HY.1943-7900.0000694

    Article  Google Scholar 

  • Guistolisi O, Savic D, Kapelan Z (2008) Pressure-driven demand and leakage simulation for water distribution networks. J Hydraul Eng 134(5):626–635. doi:10.1061/(ASCE)0733-9429(2008)134:5(626)

    Article  Google Scholar 

  • Gupta R, Bhave PR (1996) Comparison of methods for predicting deficient network performance. J Water Resour Plan Manag 122(3):214–217

    Article  Google Scholar 

  • Milan C (2010) Hybrid genetic algorithm and linear programming method for least-cost design of water distribution systems. Water Resour Manag 24(1):1–24. doi:10.1007/s11269-009-9434-1, 10.1007%2fs11269-009-9434-1

    Article  Google Scholar 

  • Pathirana A (2010). EPANET 2 desktop application for pressure driven demand modeling. Proceedings of the 12th Annual Water Distribution Systems Analysis Conference, WDSA 2010, September 12–15, Tucson, Arizona

  • Rossman LA (2000) EPANET 2 User’s Manual, Water Supply and Water Resources Division. National Risk Management Research Laboratory, Cincinnati

    Google Scholar 

  • Siew C, Tanyimboh TT (2012) Pressure-dependent EPANET extension. Water Resour Manag 26(6):1477–1498. doi:10.1007/s11269-011-9968-x

    Article  Google Scholar 

  • Spiliotis M, Tsakiris G (2011) Water distribution system analysis: Newton–Raphson method revisited. J Hydraul Eng 137(8):852–855. doi:10.1061/(ASCE)HY.1943-7900.0000364

    Article  Google Scholar 

  • Spiliotis M, Tsakiris G (2012) Water distribution network analysis under fuzzy demands. Civ Eng Environ Syst 29(2):107–122. doi:10.1080/10286608.2012.663359

    Article  Google Scholar 

  • Suribabu CR, Neelakantan TR (2011) Balancing reservoir based approach for solution to pressure deficient water distribution networks. Int J Civ Struct Eng 2(2):648–656. doi:10.6088/ijcser.00202010139

    Google Scholar 

  • Tabesh M, Tanyimboh TT, Burrows R (2002) Head-driven simulation of water supply networks. IEJ Trans A: Basics 15(1):11–22

    Google Scholar 

  • Tanyimboh TT, Templeman AB (2010) Seamless pressure-deficient water distribution system model. Proc ICE—Water Manag 163(8):389–396. doi:10.1680/wama.900013

    Article  Google Scholar 

  • Todini E (2003) A more realistic approach to the “extended period simulation” of water distribution networks. In: Maksimovic C, Butler D, Memon FA (eds) Advances in Water Supply Management. A. A. Balkema Lisse, The Netherlands, pp 173–184

    Google Scholar 

  • Wagner JM, Shamir U, Marks DH (1988) Water distribution reliability: simulation methods. J Water Resour Plan Manag 114(3):276–294

    Article  Google Scholar 

  • Wu YW, Wang RH, Walski TM, Yang SY, Bowdler D, Baggett CC (2009) Extended global-gradient algorithm for pressure-dependent water distribution analysis. J Water Resour Plan Manag 135(1):13–22. doi:10.1061/(ASCE)0733-9496(2009)135:1(13)

    Article  Google Scholar 

  • Yoo DG, Suh MY, Kim JH, Jun H, Chung G (2012) Subsystem-based pressure dependent demand analysis in water distribution systems using effective supply. KSCE J Civ Eng 16(3):457–464. doi:10.1007/s12205-012-1448-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai B. Gorev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorev, N.B., Kodzhespirova, I.F. Noniterative Implementation of Pressure-Dependent Demands Using the Hydraulic Analysis Engine of EPANET 2. Water Resour Manage 27, 3623–3630 (2013). https://doi.org/10.1007/s11269-013-0369-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-013-0369-1

Keywords

Navigation