Skip to main content

Basement Groundwater as a Complementary Resource for Overexploited Stream-Connected Alluvial Aquifers

Abstract

The use of groundwater from alluvial aquifers largely affects stream discharge by capturing the stream resources. This affects hydrological processes and riparian biodiversity. In this study, complementary water resources are investigated in an effort to ease human pressure on alluvial systems and, eventually, on stream-aquifer relationships. Discharge and hydrochemical data along a 5 km reach of the Tordera River (NE Spain) provide evidence that groundwater fluxes, associated with a regional hydrogeological system related to the basement fracture network, contribute to alluvial recharge and to stream flow. End-member mixing analysis considering upstream discharge, groundwater flows, and human inputs to the stream as major flow sources shows that regional basement groundwater fluxes are responsible for as much as 20 % of the total discharge, which also explains unexpected rises in stream flow. This suggests a possible new approach to local water resources planning, indicating that conjunctive use might actually be feasible.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. ACA, Agència Catalana de l’Aigua (2011) Stream discharge data. http://aca-web.gencat.cat/aca. Accessed 1 March 2011

  2. Boulton AJ (2007) Multiscale geomorphic drivers of groundwater flow paths: subsurface hydrologic dynamics and hyporheic habitat diversity. Freshw Biol 52:632–650

    Article  Google Scholar 

  3. Christophersen N, Neal C, Hooper RP, Vogt RD, Andersen S (1990) Modeling stream water chemistry as a mixture of soil water end members—a step towards second generation acidification models. J Hydrol 116:307–320

    Article  Google Scholar 

  4. Observatori de la Tordera (2011) Informe de la línia Hidrologia 2009. http://www.observatoritordera.cat Accessed 28 November 2011

  5. Environment Agency (2005) Groundwater–surface water interactions in the hyporheic zone. Science Report SC030155/SR1

  6. Environment Agency (2009) The hyporheic handbook. A handbook on the groundwater–surface water interface and hyporheic zone for environment managers. Science report: SC050070

  7. Folch A (2010) Geological and human influences on groundwater flow systems in range-and-basin areas: the case of the Selva Basin (Spain). Ph.D. dissertation. Universitat Autònoma de Barcelona

  8. Folch A, Menció A, Puig R, Soler A, Mas-Pla J (2011) Groundwater development effects on different scale hydrogeological systems using head, hydrochemical and isotopic data and implications for water resources management: the Selva basin (NE Spain). J Hydrol 403:83–102

    Article  Google Scholar 

  9. Foster S, Ait-Kadi M (2012) Integrated Water Resources management (IWRM): how does groundwater fit in? Hydrogeol J 20:415–418

    Article  Google Scholar 

  10. Freeze RA, Cherry JA (1979) Ground Water. Prentice Hall

  11. GeoServei (2000) Actualització i cartografia hidrogeològica del sistema fluvio-deltaic del curs mitjà i baix del riu Tordera. Agència Catalana de l’Aigua. Unpublished

  12. Hooper RP (2001) Applying the scientific method to small catchment studies: a review of the Panola Mountain experience. Hydrol Process 15:2039–2050

    Article  Google Scholar 

  13. Hooper RP, Christophersen N, Peters NE (1990) Modelling streamwater chemistry as a mixture of soil-water end members—An application to the Panola Mountain Catchment, Georgia, USA. J Hydrol 116:321–343

    Article  Google Scholar 

  14. ICC, Institut Cartogràfic de Catalunya (2011) Geological cartography of Catalonia. http://www.icc.cat Accessed 1 March 2011

  15. Kirk S, Herbert AW (2002) Assessing the impact of groundwater abstractions on river flows. In: Hiscock KM, Rivett MO, Davison RM (eds) Sustainable groundwater development, vol 193. Geological Society Special Publications, Bath, pp 211–233

    Google Scholar 

  16. Kurtenbach A, Möller S, Krein A, Symader W (2006) On the relationship between hydrographs and chemographs. Hydrol Process 20:2921–2934

    Article  Google Scholar 

  17. Mas-Pla J, Menció A, Brusi D (2007) Application of hydrological indicators for biodiversity monitoring in the Tordera River (NE Spain). In: Ribeiro L, Chambel A, Condesso de Melo MT (eds) Groundwater and Ecosystems. XXXV IAH Congress Proceedings. Lisbon 2007

  18. Mayo S, Gómez FJ, Mas-Pla J (2008) Caracterització de la conca de la Tordera. A. In: Boada M, Mayo S, Maneja R (eds) Els sistemes socioecològics de la conca de la Tordera. Institució Catalana d’Història Natural, Barcelona, pp 17–40

    Google Scholar 

  19. Menció A (2005) Anàlisi multidisciplinària de l’estat de l’aigua a la depressió de la Selva. Ph.D. dissertation. Universitat Autònoma de Barcelona

  20. Menció A, Folch A, Mas-Pla J (2010) Analyzing hydrological sustainability through water balance. Environ Manag 45:1175–1190

    Article  Google Scholar 

  21. Morgan K, Jankowsky J, Taylor G (2006) Structural controls on groundwater flow and groundwater salinity in the Spicers Creek catchment, Central West region, New South Wales. Hydrol Process 20:2857–2871

    Article  Google Scholar 

  22. SMC, Servei Meteorològic de Catalunya (2011) Xarxa agrometeorològica de Catalunya. http://xarxes.meteocat.com/ Accessed 1 March 2011

  23. Strang G (1976) Linear Algebra and its Applications. Academic Press

  24. Tellam JH, Lerner DN (2009) Management tools for the river-aquifer interface. Hydrol Process 23:2267–2274

    Article  Google Scholar 

  25. Winter TC, Harvey JW, Franke OL, Alley WM (1998) Ground water and surface water. A single resource. US Geol Surv Circ 1139:79

    Google Scholar 

Download references

Acknowledgments

This study was carried out in the context of project CGL2008-06373-C03-03/BTE funded by the Spanish Government (MEC). It is also related to the tasks of the Observatori de la Tordera, sponsored by the Catalan Water Agency (ACA).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Josep Mas-Pla.

Additional information

Revision submitted to Water Resources Management, October 2012.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mas-Pla, J., Menció, A. & Marsiñach, A. Basement Groundwater as a Complementary Resource for Overexploited Stream-Connected Alluvial Aquifers. Water Resour Manage 27, 293–308 (2013). https://doi.org/10.1007/s11269-012-0186-y

Download citation

Keywords

  • Stream-aquifer interaction
  • End-member analysis
  • Mixing
  • Overexploitation