Water Resources Management

, Volume 26, Issue 11, pp 3209–3230 | Cite as

An Integrated DSS for Groundwater Management Based on Remote Sensing. The Case of a Semi-arid Aquifer in Morocco

  • Michel Le Page
  • B. Berjamy
  • Y. Fakir
  • F. Bourgin
  • L. Jarlan
  • A. Abourida
  • M. Benrhanem
  • G. Jacob
  • M. Huber
  • F. Sghrer
  • V. Simonneaux
  • G. Chehbouni
Article

Abstract

A Decision Support System has been set up as the result of a fruitful cooperation between several public and research institutions in the framework of a large cooperation program. The DSS aims to compare spatially and temporally sectorial water demands of the Haouz-Mejjate plain (Morocco) in regard to available surface and groundwater resources. It is composed of a tool for satellite estimation of Agricultural Water Demand (SAMIR), a tool for integrated water resources planning (WEAP) and a groundwater model (MODFLOW) each of them relying on a common Geographical Information System not described here. The DSS is operating on a monthly time scale. Agricultural water demand accounts for about 80 % of the total demand. In areas where groundwater abstraction is difficult to quantify by direct methods, multitemporal remote sensing associated to the FAO methodology is a simple and efficient alternative to estimate Evapotranspiration (ET). In this work, a monthly estimate of ET from irrigated areas is derived from freely available MODIS NDVI for the 2001–2009 period. An important part of the paper deals with the validation of these estimates with eddy covariance flux measurements installed on different irrigated crops of the region. Results are satisfactory with a minus 6.5 % error per year on the monthly time scale. This preprocessing allows to dichotomize irrigated versus non-irrigated areas, and then, to estimate groundwater abstraction in subareas distinguishing by their operating modes: traditional, dam or privately irrigated. A dynamic linkage between MODFLOW and WEAP transfers the results of one model as input data to the other. The model restitutes both spatial and temporal variations in head charges and allows the calculation of the ground water balance. After calibration, piezometric validation is acceptable for the majority of the 21 head control points.

Keywords

Decision support system Groundwater Remote sensing Semi-arid Evapotranspiration 

Abbrevation list

ET

Evapotranspiration

Eta

Actual Evapotranspiration

ET0

Reference Evapotranspiration

Fc

Fraction Cover of vegetation

Kc

Crop Coefficient

Kcb

Basal Crop Coefficient

NDVI

Normalized Difference Vegetation Index

RS

Remote Sensing

VI

Vegetation Index

References

  1. Abourida A, Simonneaux V, Errouane S, Berjamy B, Sghir F (2009) Estimation des volumes d'eau pompés dans la nappe pour l'irrigation (Plaine du Haouz, Marrakech, Maroc). Comparaison d'une méthode statistique et d'une méthode basée sur l'utilisation de données de télédétection. Revue des sciences de l'eau / Journal of Water Science, vol. 22, n° 1, p. 1–13.Google Scholar
  2. Allen R, Pereira L, Raes D, Smith M (1998) Guideline for computing crop water requirements (Vol. Irrigation and Drainage Paper n°56). FAO.Google Scholar
  3. Al-Omari A, Al-Quraan S, Al-Salihi A, Abdulla F (2009) A water management support system for Amman Zarqa Basin in Jordan. Water Resour Manag 23:3165–3189. doi:10.1007/s11269-009-9428-z CrossRefGoogle Scholar
  4. Assaf H, Van Beek E, Borden C, Gijsbers P, Jolma A (2008) Chapter thirteen generic simulation models for facilitating stakeholder involvement in water resources planning and management: a comparison, evaluation, and identification of future needs. In: Jakeman AVAJ (ed) Environmental Modelling, Software and Decision Support, ElsevierGoogle Scholar
  5. Belghiti M (2008) L'agriculture irriguée au Maroc: Enjeux et marges de progrès. Revue HTE (139)Google Scholar
  6. Bernet G, Prost J (1975) Le Haouz de Marrakech et le bassin du Mejjate. Ressources en Eau du Maroc, Tome 2. Rabat, Maroc: Notes et Mémoires du Service Géologique, n° 231Google Scholar
  7. Boudhar A, Duchemin B, Hanich L, Jarlan L, Chaponnière A, Maisongrande P et al (2010) Long-term analysis of snow-covered area in the Moroccan High-Atlas through remote sensing. Int J Appl Earth Obs Geoinf 12:S109–S115. doi:10.1016/j.jag.2009.09.008 CrossRefGoogle Scholar
  8. Bzioui M (2004) Rapport national 2004 sur les ressources en eau au Maroc. UN Water Africa.Google Scholar
  9. Castaño S, Sanz D, Gómez-Alday J (2010) Methodology for quantifying groundwater abstractions for agriculture via remote sensing and GIS. Water Resour Manag 24–4:795–814. doi:10.1007/s11269-009-9473-7 CrossRefGoogle Scholar
  10. Chehbouni A, Escadafal R et al (2008) An integrated modelling and remote sensing approach for hydrological study in arid and semi-arid regions: the SUDMED Programme. 2nd International Symposium on Recent Advances in Quantitative Remote Sensing. 29:478–423. Torrent, sp: Taylor & FrancisGoogle Scholar
  11. Courault D, Seguin B, Olioso A (2005) Review on estimation of evapotranspiration, from remote sensing data: From empirical to numerical modeling approaches. Irrigat Drain Syst (79-3-4), 223–249. doi:10.1007/s10795-005-5186-0
  12. Debbi F (2004) Profil Environnemental de Marrakech, Agenda 21. Royaume du Maroc - PNUDGoogle Scholar
  13. Droubi A (2008) Development and application of a decision support system (DSS) for water resources management in Zabadani Basin (Syria) and Berrechid Basin (Morocco). DamascusGoogle Scholar
  14. Duchemin B, Hadria R, Er Raki S, Boulet G, Maisongrande P, Chehbouni A, Ezzahar J, Hoedjes J, Kharrou M, Khabba S, Mougenot B, Olioso A, Rodriguez J, Simonneaux V (2006) Monitoring wheat phenology and irrigation in Center of Morocco: on the use of relationship between evapotranspiration, crops coefficients, leaf area index and remotely–sensed vegetation indices. Agr Water Manag 79–1:1–27. doi:10.1016/j.agwat.2005.02.013 CrossRefGoogle Scholar
  15. Er Raki S, Chehbouni A, Guemouria N, Duchemin B, Ezzahar J, Hadria R (2007) Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region. Agr Water Manag 87–1:41–54. doi:10.1016/j.agwat.2006.02.004 CrossRefGoogle Scholar
  16. European Environment Agency (2006) The thematic accuracy of previous Corine land cover 2000. Assessment using LUCAS land use/cover area frame statistical survey. Retrieved 06 01, 2011, from http://reports.eea.europa.eu/technical_report_2006_7/en
  17. Ezzahar J, Chehbouni A, Hoedjes J, Er Raki A, Chehbouni Ah, Boulet G, Bonnefond J, De Bruin H (2007) The use of the scintillation technique for monitoring seasonal water consumption of olive orchards in a semi arid region. Agr Water Manag 89–3:173–184. doi:10.1016/j.agwat.2006.12.015 CrossRefGoogle Scholar
  18. FAO (2003) Review of world water resources by country (Vol. Water Reports 23)Google Scholar
  19. FAO (2011) Aquastat Morocco. Retrieved from http://www.fao.org/nr/water/aquastat
  20. Höllermann B, Giertz S, Diekkrüger B (2010) Benin 2025—balancing futurewater availability and demand using the WEAP ‘water evaluation and planning’ system. Water Resour Manag 24:3591–3613. doi:10.1007/s11269-010-9622-z CrossRefGoogle Scholar
  21. Hua L, Raupach M, McVicar T (2001) Decomposition of vegetation cover into woody and herbaceous components using AVHRR NDVI time series. CSIRO Land and Water, 35–01Google Scholar
  22. Huete A, Didan K, Yin Y (2002) http://tbrs.arizona.edu/cdrom/VI_Intro/VI_MOD_VI_Prod.html. Retrieved from Terrestrial Biophysics and Remote Sensing Lab
  23. Johannes M (2004) Modelling of the water balances in the Río Turbio aquifer. Wageningen University, MexicoGoogle Scholar
  24. Justice C, Townshend J, Vermote E, Masuoka E, Wolfe R, Saleous N, Roy D, Morisette J (2002) An overview of MODIS Land data processing and product status. Remote Sensing of Environment , 83-1-2:3–15, doi:10.1016/S0034-4257(02)00084-6
  25. Kabbaj A, Zeryouhi I, Pointet T (1979) Alimentation en eau de la ville de Marrakech: projet à court, moyen et long terme. Influences sur la nappe. Effects of Urbanization and Industraialization on the Hydrological Regime and on Water Quality. IAHS, AmsterdamGoogle Scholar
  26. Margat J, Vallée D (1997) Démographie en Méditéranéee. Options Méditerranéenne. 31. CIHEAM.Google Scholar
  27. Masson V, Champeaux J, Chauvin N, Meriguet C, Lacaze R (2003) A global database of land surface parameters at 1-km resolution in meteorological and climate models. J Climate 16–9:1261–1282CrossRefGoogle Scholar
  28. McDonald M, Harbaugh A (1988) A modular three dimensional finite difference ground-water flow model. Techniques of Water-Resources Investigations, Book 6. U.S. Geological SurveyGoogle Scholar
  29. McKinney D (2004) International survey of decision support systems for integrated water management. Bucharest, Romania: IRG PROJECT N° 1673-000Google Scholar
  30. Mobin-ud-Din A, Bastiaanssen W, Feddes R (2005) A new technique to estimate net groundwater use across large irrigated areas by combining remote sensing and water balance approaches. Hydrogeol J 13(5–6):653–664. doi:10.1007/s10040-004-0394-5 Google Scholar
  31. Mutiga J, Mavengano S, Zhongbo S, Woldai T, Becht R (2010) Water allocation as a planning tool to minimise water use conflicts in the upper Ewaso Ng’iro North Basin, Kenya. Water Resour Manag 24–14:3939–3959. doi:10.1007/s11269-010-9641-9 CrossRefGoogle Scholar
  32. Perera B, James B, Kularathna M (2005) Computer software tool REALM for sustainable water allocation and management. J Environ Manage 77–4:291–300. doi:10.1016/j.jenvman.2005.06.014 CrossRefGoogle Scholar
  33. Rijsberman FR (2006) Water scarcity: fact or fiction? Agr Water Manag 80(1–3):5–22. doi:10.1016/j.agwat.2005.07.001 CrossRefGoogle Scholar
  34. Sieber J, Purkey D (2011) WEAP user guide, http://www.weap21.org
  35. Simonneaux V, Duchemin B, Chehbouni Ag, Cherkaoui M, Kharrou M (2007a) SAMIR, a tool for evapotranspiration assesment using remote sensing. 2nd International Symposium on Recent Advances in Quantitative Remote Sensing. 29: 597–601, Torrent, sp: Taylor & Francis.Google Scholar
  36. Simonneaux V, Duchemin B, Helson D, Er-Raki S, Olioso A, Chehbouni Ag (2007b) The use of high-resolution image time series for crop classification and evapotranspiration estimate over an irrigated area in central Morocco. Int J Rem Sens 29–1:95–116. doi:10.1080/01431160701250390 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Michel Le Page
    • 1
  • B. Berjamy
    • 2
  • Y. Fakir
    • 3
  • F. Bourgin
    • 1
  • L. Jarlan
    • 1
  • A. Abourida
    • 3
  • M. Benrhanem
    • 2
  • G. Jacob
    • 1
  • M. Huber
    • 4
  • F. Sghrer
    • 5
  • V. Simonneaux
    • 1
  • G. Chehbouni
    • 1
  1. 1.CESBIO (UMR 5126 CNES-CNRS-UPS-IRD)ToulouseFrance
  2. 2.ABHT—Agence du Bassin Hydraulique du TensiftMarrakechMorocco
  3. 3.UCAM—Université Cadi Ayyad de MarrakechMarrakechMorocco
  4. 4.BGR—Federal Institute for Geosciences and Natural ResourcesHannoverGermany
  5. 5.ORMVAH—Office Régional de Mise en Valeur Agricole du HaouzMarrakechMorocco

Personalised recommendations