Advertisement

Water Resources Management

, Volume 25, Issue 9, pp 2109–2124 | Cite as

Use of Ozone in Wastewater Treatment to Produce Water Suitable for Irrigation

  • Sonia B. Martínez
  • Jerónimo Pérez-Parra
  • Ricardo SuayEmail author
Article

Abstract

The use of ozone to disinfect sewage is becoming increasingly important, especially when a high degree of treatment is required. Ozone is a strong disinfectant with a high oxidation potential and is one of the most effective ways of inactivating pathogens. In order to observe and evaluate the effect of this disinfectant on the physical, chemical and microbiological characteristics of wastewaters, we analyzed the effluent input and output of an ozone disinfection plant located in Almeria, southeast Spain. The ozone input rate is adjusted according to the residual ozone content in the effluent output. The effluent is currently reused to irrigate vegetable crops. Another objective of this study has therefore been to verify the adequacy of this water treated process for preparing water for this purpose. Among the results obtained, it is important to highlight the fact that the ozone disinfection treatment was sufficient to inactivate faecal coliforms. We achieved reductions in these pathogens of around 89%. This treatment was respectful towards elements that give the reuse of effluent an added value in irrigation (N, P, K, etc) and also kept the quality of the waters within the authorized limits. Thus, we achieved up to 88% removal of COD, a maximum 68% removal of BOD5 and up to 75% removal of suspended solids. Based on the results of the parameters analyzed in this ozonized effluent, we concluded that ozone-treated water is suitable for reuse in the irrigation of fresh consumption crops in accordance with the guidelines established in related legislation.

Keywords

Disinfection Irrigation Microorganism Ozone Reuse Wastewaters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Absi F, Gamache F, Gerh F, Liechti P, Nicell J (1993) Pilot plant investigation of ozone disinfection of physico-chemically treated municipal wastewater. In: Ozone in water and wastewater treatment. Proceedings of the 11th ozone congress, San Francisco, California; International Ozone Association, Stamford, Connecticut pp S733–S741Google Scholar
  2. Alfafara CG, Migo VP, Amarante JA, Dallo RF, Matsumra M (2000) Ozone treatment of distillery slop waste. Water Sci Technol 42(3–4):193–198Google Scholar
  3. Al-Khashman OA (2009) Chemical evaluation of Ma’an sewage effluents and its reuse in irrigation purposes. Water Resour Manage 23:1041–1053CrossRefGoogle Scholar
  4. American Public Health Association, American Water Works Association, Water Environment Federation (2005) Standard methods for examination of water and wastewater, 21st edn. Washington DC, USAGoogle Scholar
  5. Amirsardari Y, Yu Q, Williams P (1997) Effect of ozonation and coagulation on turbidity and TOC removal by simulated direct filtration for potable water treatment. Environ Technol 18(11):1143–1150CrossRefGoogle Scholar
  6. Amirsardari Y, Yu Q, Williams P (2001) Effect of ozonation and UV irradiation with direct filtration on disinfection and disinfection by-product precursor in drinking water treatment. Environ Technol 22(9):1015–1023CrossRefGoogle Scholar
  7. Asano T (1998) Wastewater reclamation and reuse, Vol. 10. In: Eckenfelder WW, Malina JF, Pattersson JW (eds) Water quality management library. CRC Press, Boca RatonGoogle Scholar
  8. Asano T, Tchobanoglous G (1991) The role of wastewater reclamation and reuse in the U.S.A. Water Sci Technol 23(10/12):2040–2059Google Scholar
  9. Ayers RS, Westcot DW (1985) Water quality for agriculture. FAO Irrigation and Drainage Paper 29 (Rev. 1), Food and Agriculture Organization (FAO) of the United Nations. Rome, ItalyGoogle Scholar
  10. Bahri A (1998) Wastewater reclamation and reuse in Tunisia. In: Asano T (ed) Wastewater reclamation and reuse, water quality management library, vol 10, pp 877–916Google Scholar
  11. Bocci V (2002) Oxygen-ozone therapy: a critical evaluation. Kluwer, The Netherlands. ISBN 1-4020-0588-1Google Scholar
  12. Cañizares P, Lobato J, Paz R, Rodrigo MA, Sáez C (2007) Advanced oxidation processes for the treatment of olive-oil mills wastewater. Chemosphere 67:832–838CrossRefGoogle Scholar
  13. Chun-du W, Jin-yu C, Ning L, Cheng-wu Y (2007) Ozone oxidation of photographic processing wastewater in a batch reactor. Int J Plasma Environ Sci Technol 11(2):135–140Google Scholar
  14. den Blanken JG (1985) Comparative disinfection of treated sewage with chlorine and ozone. Water Res 19(9):1129–1140CrossRefGoogle Scholar
  15. Enriquez R (1989) Análisis de boro en suelos y plantas mediante el método de azometina-H. Terra 7:13–20Google Scholar
  16. Environmental Protection Agency (E.P.A.) (1999) Combined sewer overflow technology fact sheet. Alternative disinfection methods. EPA-832-F-99-033. Washington D.C.Google Scholar
  17. Fatta-Kassinos D, Hapeshi E, Achilleos A, Meric S, Gros M, Petrovic M, Barcelo D (2010). Existence of pharmaceutical compounds in tertiary treated urban wastewater that is utilized for reuse applications. Water Resour Manage. doi: 10.1007/s11269-010-9646-4 Google Scholar
  18. Fisher CW, Lee D, Dodge BA, Hamman KM, Robbins JB, Martin SE (2000) Influence of catalase and superoxide dismutase on ozone inactivation of L. monocytogenes. Appl Environ Microbiol 66(4):1405–1409CrossRefGoogle Scholar
  19. Gardiner DK, Montgomery HAC (1968) The treatment of sewage effluents with ozone. Waste Water Treat 12(9–10):92–101Google Scholar
  20. Graham DM (1997) Use of ozone for food processing. Food Technol 51:72–75Google Scholar
  21. Graham N, Paraskeva P (2001) Recent studies of ozone disinfection of secondary municipal effluents. In: Proceedings of the 15th world congress, 11–15 Sept, London, UK. International Ozone Association, Stamford, Connecticut pp 276–291Google Scholar
  22. Haruvy N, Offer R, Hadas A, Ravina I (1999) Wastewater irrigation-economic concerns regarding beneficiary and hazardous effects of nutrients. Water Resour Manage 13:303–314CrossRefGoogle Scholar
  23. Health and Safety Executive (1983) Ozone: health hazards and precautionary measures. Guidance note EH 38Google Scholar
  24. Khadre MA, Yousef AE, Kim JG (2001) Microbiological aspects of ozone applications in food: a review. J Food Sci 66(9):1242–1252CrossRefGoogle Scholar
  25. Kishimoto N, Morita Y, Tsuno H, Yasuda Y (2007) Characteristics of electrolysis, ozonation and their combination process on treatment of municipal wastewater. Water Environ Res 79(9):1033–1042CrossRefGoogle Scholar
  26. Kowal NE, Parhen HR, Akin EW (1980) Microbiological health effects associated with the use of municipal wastewater for irrigation. In: International conference on cooperative research needs for the renovation and reuse of municipal wastewater for agriculture. Secretaría de agricultura y recursos hidráulicos, Mexico City, Mexico D.F.Google Scholar
  27. Langlais B (1983) L‘Ozone dans le traiteement des eaux residuaires. In: Proceedings of ozonation: environmental impact and benefit, Brussels, Belgium. International Ozone Association: Stamford, Connecticut, pp 183–196Google Scholar
  28. Langlais B (1988) La désinfection des effluents rejetés en zone littorale. Procédés de substitution à la chloration. L‘eaux, l‘industrie, les nuisances 118:31–32Google Scholar
  29. Langlais B, Reckhow DA, Brink DR (1991) Ozone in water treatment application and engineering. Co-operative research report. CRC Press LLC, FloridaGoogle Scholar
  30. Langlais B, Legube B, Beuffe H, Doré M (1992) Study of the nature of the by-products formed and the risks of toxicity when disinfecting a secondary effluent with ozone. Water Sci Technol 25(12):135–143Google Scholar
  31. Lazarova V, Janex ML, Fiksdal L, Oberg C, Barcina I, Pommepuy M (1998) Advanced wastewater disinfection technologies: short and long-term efficiency. Water Sci Technol 38(12):109–117CrossRefGoogle Scholar
  32. Liberti L, Notarnicola M (1999) Advanced treatment and disinfection for municipal wastewater reuse in agriculture. Water Sci Technol 40(4–5):235–245Google Scholar
  33. Liberti L, Notarnicola M, López A (2000) Advanced treatment for municipal wastewater reuse in agriculture. III-Ozone disinfection. Ozone Sci Eng 22(2):151–166CrossRefGoogle Scholar
  34. MAPA. Ministerio de Agricultura, Pesca y Alimentación. Métodos Oficiales de análisis (1994) Tomo III. Secretaría General Técnica del Ministerio de Agricultura, Pesca y Alimentación, Madrid, SpainGoogle Scholar
  35. MAPA. Ministerio de Agricultura, Pesca y Alimentación (2007) Anuario de estadística agroalimentaria 2006, Madrid, SpainGoogle Scholar
  36. Martínez S (2005) Utilización de aguas residuales depuradas para riego de cultivos hortícolas bajo invernadero. PhD thesis, Universidad de Almería, SpainGoogle Scholar
  37. Nawrocki J, Swietlik J, Raczyk-Stanislawiak U, Dabrowska A, Bilozor S, Ilecki W (2003) Influence of ozonation conditions on aldehyde and carboxylic acid formation. Ozone Sci Eng 25(1):53–62CrossRefGoogle Scholar
  38. Nebel C, Gottschling RD, Hutchison RL, McBride TJ, Taylor DM, Pavoni JL, Tittlebaum ME, Spencer HE, Fleischman M (1973) Ozone disinfection of industrial-municipal secondary effluents. J Water Pollut Control Federation 45(12):2493–2506Google Scholar
  39. Paraskeva P, Graham NJD (2002) Ozonation of the municipal wastewater effluents. Water Environ Res 74:569–581CrossRefGoogle Scholar
  40. Paraskeva P, Lambert SD, Graham NJD (1998) Influence of ozonation conditions on the treatability of secondary effluents. Ozone Sci Eng 20(2):133–150CrossRefGoogle Scholar
  41. Rice RG (1997) Applications and current status of ozone for municipal and industrial wastewater treatment: a literature review. In: Imperial college centre for environmental control & waste management, the role of ozone in wastewater treatment. London, UK, pp 55–96Google Scholar
  42. Rice RG, Evinson LM, Robson CM (1981) Ozone disinfection of municipal wastewater current state-of-the-art. Ozone Sci Eng 3:239–272CrossRefGoogle Scholar
  43. Rich T, Vervalle P (1995) Where to consider the ozone advantage. Water Technol Mag 18(9):1–4Google Scholar
  44. Richardson SD, Thruston AD Jr, Caughran TV, Chen PH, Collette TW, Floyd TL (1999) Identification of new ozone disinfection by products in drinking water. Environ Sci Technol 33:3368–3377CrossRefGoogle Scholar
  45. Rico AM, Olcina J, Paños V, Baños C (1998) Depuración, desalación y reutilización de aguas en España. Oikos-Tau, Barcelona, SpainGoogle Scholar
  46. Rosas I, Báez A, Coutiño M (1984) Bacteriological quality of crops irrigated with wastewater in the Xochimilco plots, Mexico city, Mexico. Appl Environ Microbiol 47(5):1074–1079Google Scholar
  47. Roy D, Englebrecht RS, Kchian ES (1982) Comparative inactivation of six enteroviruses by ozone. J Am Water Works Assoc 74:660–664Google Scholar
  48. Sánchez F, Pulido A, Calaforra JM, Navarrete F (1998) Algunos aspectos de la contaminación en el Bajo Andarax (Almería) Jornadas sobre la contaminación de las aguas subterráneas: un problema pendiente. Valencia, Spain, pp 445–452Google Scholar
  49. Seoánez M (1999) Ingeniería del Medio Ambiente. Aplicada al medio natural continental. Ediciones Mundi-Prensa, 2a edn. Madrid, SpainGoogle Scholar
  50. Shahalam A, Zahra BMA, Jaradat A (1998) Wastewater irrigation effect on soil, crop and environment: a pilot scale study at Irbid, Jordan. Water Air Soil Pollut 106:425–428CrossRefGoogle Scholar
  51. Shin GA, Sobsey MD (2003) Reduction of Norwalk Virus, Poliovirus 1, and Bacteriophage MS2 by ozone disinfection of water. Appl Environ Microbiol 69:3975–3978CrossRefGoogle Scholar
  52. Spanish Royal Decree 1620/2007 (2007) Reutilización de las aguas depuradas. BOE n° 294, 8 December 2007, Spain. http://www.boe.es/boe/dias/2007/12/08/pdfs/A50639-50661.pdf
  53. Thomas R, Law JP (1977) Properties of waste water. In: Soils for management of organic wastes and waste waters: cap 3, ASA, CSSA and SSSA, pp 47–72Google Scholar
  54. Tyrrell SA, Ryppey SR, Watkins WD (1995) Inactivation of bacterial and viral indicators in secondary sewage effluents, using chlorine and ozone. Water Res 29(11):2483–2490CrossRefGoogle Scholar
  55. Voidarou C, Tzora A, Skoufos I, Vassos D, Galogiannis G, Alexopoulos A, Bezirtzoglou E (2007) Experimental effects of ozone upon some indicator bacteria for preservation of an ecologically protected watery system. Water Air Soil Pollut 181:161–171CrossRefGoogle Scholar
  56. World Health Organization (WHO) (1989) Health guidelines for the use of wastewater in agriculture and aquaculture. Technical Report Series No. 778, Geneva, SwitzerlandGoogle Scholar
  57. World Health Organization (WHO) (2006) Guidelines for the safe use of wastewater, excreta and greywater. Volume II Wastewater use in agriculture. Geneva, SwitzerlandGoogle Scholar
  58. Xu P, Janex ML, Savoye P, Cockx A, Lazarova V (2002) Wastewater disinfection by ozone: main parameters for process design. Water Res 36:1043–1055CrossRefGoogle Scholar
  59. Zhang X, Miner RA (2006) Formation, adsorption and separation of high molecular weight disinfection by products resulting from chlorination of aquatic humic substances. Water Res 40:221–230CrossRefGoogle Scholar
  60. Zhang Y, Grant A, Sharma A, Chen D, Chen L (2010) Alternative water resources for rural residential development in Western Australia. Water Resour Manage 24:25–36CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Sonia B. Martínez
    • 1
  • Jerónimo Pérez-Parra
    • 2
  • Ricardo Suay
    • 1
    Email author
  1. 1.Instituto Valenciano de Investigaciones AgrariasMoncadaSpain
  2. 2.Fundación CajamarEstación Experimental “Las Palmerillas”El EjidoSpain

Personalised recommendations