Advertisement

Water Resources Management

, Volume 24, Issue 9, pp 1867–1884 | Cite as

Karst Spring Discharges Analysis in Relation to Drought Periods, Using the SPI

  • Francesco FiorilloEmail author
  • Francesco M. Guadagno
Article

Abstract

Based on the long hydrological time series, the correlation between karst spring discharge series and rainfall has been analysed, using the Standard Precipitation Index (SPI). Analysis has been focused on the drought periods. Data come from a large karst system (Campania, Southern Italy), in an area characterised by a distribution of the precipitation prevalently during autumn-winter period. Insufficient recharge due to poor rainfall results in flat spring hydrographs (with no peak during spring season) that indicate a continuously decreasing discharge. Specifically, it has been found that 12 months cumulative rainfall, expressed by SPI12, and spring discharge have similar trend. When SPI12 will be equal or less that − 1, springs reduce the discharge, and a flat spring hydrograph will be produced when SPI reaches value less than − 1.5. In these cases, the prolonged shortage of accumulated rainfall causes a reduction in spring discharge also during the following year as well, pointing out a memory effect of the karst aquifer, and more complex rainfall–discharge relationship is observed.

Keywords

Karst spring Discharge Drought SPI Southern Italy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aquino S, Allocca V, Esposito L, Celico P (2006) Risorse Idriche della provincia di Avellino. Arti Grafiche Cinque s.r.l., Avellino, 120 ppGoogle Scholar
  2. Atkinson TC (1977) Diffuse flow and conduit flow in limestone terrain in Mendip Hills, Somerset (Great Britain). J Hydrol 35(93):100Google Scholar
  3. Bonacci O (1993) Karst spring hydrographs as indicators of karst aquifers. Hydrol Sci J 38:51–62CrossRefGoogle Scholar
  4. Bonacci O, Trninic D, Roje-Bonacci T (2008) Analyses of the water temperature regime of the Danube and its tributaries in Croatia. Hydrol Process 22(7):1014–1021CrossRefGoogle Scholar
  5. Budetta P, Celico P, Corniello A, De Riso R, Ducci D, Nicotera P (1994) Carta Idrogeologica della Campania 1:200.000. In: Proc. of IV geoengineering Int. congress “soil and groundwater protection”, 10–11 March, Torino-Italy, pp 565–585Google Scholar
  6. Celico P (1978) Schema idrogeologico dell’Appennino carbonatico centro-meridionale. Memorie e Note Istituto di Geologia Applicata, Napoli 14:1–43Google Scholar
  7. Celico P (1981) Relazioni tra l’idrodinamica sotterranea e terremoti in Irpinia (Campania). Rend Soc Geol Ital 4:103–108Google Scholar
  8. Chen Z, Grasby SE, Osadetz KG (2004) Relation between climate variability and groundwater levels in the upper carbonate aquifer, southern Manitoba, Canada. J Hydrol 290:43–62CrossRefGoogle Scholar
  9. Civita M (1969) Idrogeologia del massiccio del Terminio-Tuoro (Campania). Memorie e Note Istituto di Geologia Applicata. Università di Napoli, ItalyGoogle Scholar
  10. Civita M (2005) Idrogeologia applicata e ambientale. Casa Editrice Ambrosiana, Milano, 794 ppGoogle Scholar
  11. Coppola L, Pescatore T (1989) Lineamenti di neotettonica dei Monti Terminio-Tuoro, Cervialto, e Marzano (Appennino meridionale). Boll Soc Geol Ital 108:105–119Google Scholar
  12. Coppola L, Cotecchia V, Lattanzio M, Salvemini A, Tadolini T, Ventrella NA (1989) Il gruppo di sorgenti di Cassano Irpino: regime idrologico ed analisi strutturale del bacino di alimentazione. Geol Appl Idrogeol XXIV:227–260Google Scholar
  13. Cotecchia V, Salvemini A (1981) Correlazione tra eventi sismici e variazioni di portate alle sorgenti di Caposele e Cassano Irpino, con particolare riferimento al sisma del 23 novembre 1980. Geol Appl Idrogeol XVI:167–192Google Scholar
  14. Dragoni W, Sukhija BS (2008) Climate change and groundwater: a short review, vol 288. Geological Society, London, Special Publications 2008, pp 1–12Google Scholar
  15. Edwards CDC, McKee TB, Doesken NJ, Kleist J (1997) Historical analysis of drought in the United States. In: 7th conference on climate variations, 77th AMS annual meeting, 2–7 February 1997, Long Beach, CaliforniaGoogle Scholar
  16. Fiorillo F (2009) Spring hydrographs as indicators of droughts in a karst environment. J Hydrol 373:290–301CrossRefGoogle Scholar
  17. Fiorillo F, Wilson RC (2004) Rainfall induced debris flows in pyroclastic deposits, Campania (southern Italy). Eng Geol 75(3–4):263–289CrossRefGoogle Scholar
  18. Fiorillo F, Esposito L, Guadagno FM (2007) Analyses and forecast of water resources in an ultra-centenarian spring discharge series from Serino (Southern Italy). J Hydrol 336:125–138CrossRefGoogle Scholar
  19. Garbrecht J, Fernandez GP (1994) Visualization of trends and fluctuations in climatic records. Water Resour Bull 30(2):297–306Google Scholar
  20. Gunn J (1986) A conceptual model for conduit flow dominated karst aquifers. In: Günay G, Johnson AI (eds) Karst water resources. Proc Ankara Symp, July 1985, pp 587–596. IAHS Publ. n. 161Google Scholar
  21. Guttman NB (1997) Comparing the Palmer drought index and the standardized precipitation index. J Am Water Resour Assoc 34(1):113–121CrossRefGoogle Scholar
  22. Guttman NB (1999) Accepting the standardized precipitation index: a calculation algorithm. J Am Water Resour Assoc 35(2):311–322CrossRefGoogle Scholar
  23. Hayes MJ (2000) Revisiting the SPI: clarifying the process. University of Nebraska-Lincoln. Drought Network News 12(1):13–14. http://digitalcommons.unl.edu/droughtnetnews/18 Google Scholar
  24. Hisdal H, Tallaksen LM, Clausen B, Peters E, Gustard A (2004) Hydrological drought characteristics. In: Tallaksen LM, Van Lanen HAJ (eds) Hydrological drought: processes and estimation methods for stream flow and groundwater. Elsevier, Amsterdam, 579 ppGoogle Scholar
  25. Ietto A (1965) Su alcune particolari strutture connesse alla tettonica di sovrascorrimento nei M. Picentini (Appennino meridionale). Boll Soc Nat Napoli 74:65–85Google Scholar
  26. ISPRA (2009) Geological map of Italy, 1:50.000 scale, Foglio n. 450 “S. Angelo dei Lombardi”—Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Rome. http://www.apat.gov.it/Media/carg/
  27. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: 8th conference on applied climatology, Anaheim, CA. American Meteorological Society, Boston, pp 179–184Google Scholar
  28. Nalbantis I, Tsakiris G (2009) Assessment of hydrological drought revisited. Water Resour Manag 23:881–897CrossRefGoogle Scholar
  29. Padilla A, Pulido-Bosch A, Mangin A (1994) Relative importance of baseflow and quickflow from hydrographs of karst spring. Ground Water 32(2):267–277CrossRefGoogle Scholar
  30. Pappone G, Ferranti L (1995) Thrust tectonics in the Picentini Mountains, Southern Apennines, Italy. Tectonophysics 252:331–348CrossRefGoogle Scholar
  31. Parotto M, Praturlon A (2004) In: Crescenti U, D’Offizi S, Merlino S, Sacchi L (eds) The Southern apennine arc. Special volume of the Italian geological society, 32° Int. Geol. Conf., Florence, pp 34–58Google Scholar
  32. Peters E, Torfs PJJF, van Lanen HAJ, Bier G (2003) Propagation of drought through groundwater—a new approach using linear reservoir theory. Hydrol Process 17(15):3023–3040CrossRefGoogle Scholar
  33. Polemio M, Casarano D (2008) Climate change, drought and groundwater availability in Southern Italy, vol 288. Geological Society, London, Special Publications 2008, pp 39–51Google Scholar
  34. Smakhtin VU (2001) Low flow hydrology: a review. J Hydrol 240:147–186CrossRefGoogle Scholar
  35. Tallaksen LM, Van Lanen HLJ (2004) Drought as a natural hazard. In: Tallaksen L, Van Lanen H (eds) Hydrological drought: processes and estimation methods for stream flow and groundwater. Elsevier, Amsterdam, 579 ppGoogle Scholar
  36. Thornthwaite CW, Mather JR (1957) Instructions and tables for computing potential evapotranspiration and the water balance. Publication in Climatology 10, Drexel Institute of Technology, Centerton, NJGoogle Scholar
  37. Tsakiris G, Vangelis H (2004) Towards a drought watch system based on spatial SPI. Water Resour Manag 18:1–12CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Dipartimento di Studi Geologici e AmbientaliUniversità degli Studi del SannioBeneventoItaly

Personalised recommendations