Water Resources Management

, Volume 24, Issue 5, pp 921–939 | Cite as

Groundwater Recharge Zone Mapping Using GIS-Based Multi-criteria Analysis: A Case Study in Central Tunisia (Maknassy Basin)

  • Ismail Chenini
  • Abdallah Ben Mammou
  • Moufida El May


The groundwater recharge zone mapping often requires a large amount of spatial information and criteria. Geographic information systems are capable of managing large amount of spatially related information, providing the ability to integrate multiple layers of information for multi-criteria analysis. To show the capabilities of GIS techniques for mapping groundwater refill zone in arid area, a study was carried out in the Maknassy basin located in Central Tunisia. This evaluation incorporates historic rainfall data analysis, watershed drainage density, surficial geology and aquifer boundary conditions. The study basin is categorized according to the previous criteria. Multi-criteria analysis is performed to evaluate suitability to the groundwater recharge for each factor, according to its associated weight. The thematic layers were integrated with one another using the weighted aggregation method to derive the groundwater recharge map. The results demonstrated that the GIS methodology has good functionality for mapping groundwater recharge zone.


Arid area Groundwater recharge Geographical information systems (GIS) Weighted segregation method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Qudah K, Abu-Jaber N (2009) A GIS database for sustainable management of shallow water resources in the Tulul al Ashaqif Region, NE Jordan. Water Resour Manag 23:603–615. doi: 10.1007/s11269-008-9290-4 CrossRefGoogle Scholar
  2. Baker ME, Wiley MJ, Seelbach PW (2001) GIS-based hydrologic modeling of riparian areas: implications for stream water quality. J Am Water Resour Assoc 37(6):1615–1628CrossRefGoogle Scholar
  3. Başağaoğlu H, Mariňo MA (1999) Joint management of surface and ground water supplies. Ground Water 37(2):214–222CrossRefGoogle Scholar
  4. Bastiaansen W, Menenti R, Feddes R, Holtslag A (1998) A remote sensing surface energy balance algorithm for lands (SEBAL). J Hydrol 212:198–229CrossRefGoogle Scholar
  5. Besbes M, Delhome JP, Marsily G (1978) Estimating recharge from ephemeral streams in arid regions: a case study at Kairouan, Tunisia. Water Resour Res 14:281–290CrossRefGoogle Scholar
  6. Boutib L, Zargouni F (1998) Disposition et géométrie des plis de l’Atlas centro-méridional de Tunisie: découpage et cisaillement en lanière tectonique. C R Acad Sci Paris 326:261–265Google Scholar
  7. Chenini I (2009) Géologie et hydrogéologie du basin de Maknassy. Modélisation de la recharge potentielle des nappes. PhD thesis, University of Tunis El Manar, TunisiaGoogle Scholar
  8. Chenini I, Ben mammou A, Turki MM, Mercier E (2008) Groundwater resources in Maknassy basin (central Tunisia): hydrological data analysis and water budgeting. Geosci J 12(4):385–399. doi: 10.1007/s12303-008-0038-1 CrossRefGoogle Scholar
  9. Chowdary VM, Ramakrishnan D, Srivastava YK, Chandran V, Jeyaram A (2009) Integrated water resource development plan for sustainable management of Mayurakshi Watershed, India using remote sensing and GIS. Water Resour Manag 23:1581–1602. doi: 10.1007/s11269-008-9342-9 CrossRefGoogle Scholar
  10. Cowen DJ (1988) GIS versus CAD versus DBMS: what are the difference? Photogramm Eng Remote Sensing 54(11):1551–1555Google Scholar
  11. Davis SN, DeWiest RJM (1966) Hydrogeology. Wiley, New YorkGoogle Scholar
  12. Dixon B (2005) Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis. J Hydrol 309:17–38CrossRefGoogle Scholar
  13. Fortes PS, Platonov AE, Pereira LS (2005) GISAREG—a GIS based irrigation scheduling simulation model to support improved water use. Agric Water Manag 77:159–179CrossRefGoogle Scholar
  14. Gasmi M, Trabilsi H, Jaouadi M, Kadri A (2006) Caractérisation géophysique des assises carbonatées de la partie inférieure du zebbag (Albien Terminal–Cénomanien) dans le secteur Maknassy–Mezzouna (Tunisie Centrale). Intérêt hydrogéologique. WATMED 3, Communication. Tripoli, LebanonGoogle Scholar
  15. Henry NNB, James WM, David BM, John CH, Aris AH (2007) A GIS-based approach to watershed classification for Nebraska reservoirs. J Am Water Resour Assoc 43(3):605–621CrossRefGoogle Scholar
  16. Illy P (1967) Etude hydrogéologique préliminaire de la région de Gafsa-Maknassy. Projet de planification rurale intégré de la Tunisie centrale. F.A.O., p 81Google Scholar
  17. Jasrotia AS, Majhi A, Singh S (2009) Water balance approach for rainwater harvesting using remote sensing and gis techniques, Jammu Himalaya, India. Water Resour Manag. doi: 10.1007/s11269-009-9422-5 Google Scholar
  18. Koch H, Grünewald U (2009) A comparison of modelling systems for the development and revision of water resources management plans. Water Resour Manag 23:1403–1422. doi: 10.1007/s11269-008-9333-x CrossRefGoogle Scholar
  19. Kopec RJ (1963) An alternative method for the construction of Thiessen polygons. Prof Geogr XV(5):24–26CrossRefGoogle Scholar
  20. Krishnamurthy J, Srinivas G (1995) Role of geological and geomorphological factors in ground water exploration: a study using IRS LISS data. Int J Remote Sens 16(14):2595–2618CrossRefGoogle Scholar
  21. Krishnamurthy J, Venkatesa KN, Jayaraman V, Manivel M (1996) An approach to demarcate ground water potential zones through remote sensing and geographic information systems. Int J Remote Sens 17(10):1867–1884CrossRefGoogle Scholar
  22. Krishnamurthy J, Mani A, Jayaraman V, Manivel M (2000) Groundwater resources development in hard rock terrain—an approach using remote sensing and GIS techniques. J Appl Geog 2(3):204–215Google Scholar
  23. Ma L, Spalding RF (1997) Effects of artificial recharge on ground water quality and aquifer storage recovery. J Am Water Resour Assoc 33(3):561–572CrossRefGoogle Scholar
  24. Mamou A, Kassah A (2000) Économie et valorisation de l’eau en Tunisie. Sc et changement planétaire/sècheresse 11(4):249–256Google Scholar
  25. Mantzafleri N, Psilovikos A, Blanta A (2009) Water quality monitoring and modeling in Lake Kastoria, using GIS. Assessment and management of pollution sources. Water Resour Manag 23:1563–1580. doi: 10.1007/s11269-009-9431-4 CrossRefGoogle Scholar
  26. Martin PH, LeBoeuf EJ, Dobbins JP, Daniel EB, Abkowitz MD (2005) Interfacing GIS with water resource models: a state-of-the-art review. J Am Water Resour Assoc 41(6):1471–1487CrossRefGoogle Scholar
  27. Murthy KSR (2000) Ground water potential in a semi-arid region of Andhra Pradesh—a geographical information system approach. Int J Remote Sens 21(9):1867–1884CrossRefGoogle Scholar
  28. Naik MG, Rao EP, Eldho TI (2009) Finite element method and GIS based distributed model for soil erosion and sediment yield in a watershed. Water Resour Manag 23:553–579. doi: 10.1007/s11269-008-9288-y CrossRefGoogle Scholar
  29. Patil JP, Sarangi A, Singh OP, Singh AK, Ahmad T (2008) Development of a GIS interface for estimation of runoff from watersheds. Water Resour Manag 22:1221–1239. doi: 10.1007/s11269-007-9222-8 CrossRefGoogle Scholar
  30. Rowshon MK, Amin MSM, Lee TS, Shariff ARM (2009) GIS-integrated rice irrigation management information system for a river-fed scheme. Water Resour Manag 23:1621–1640. doi: 10.1007/s11269-009-9412-7 CrossRefGoogle Scholar
  31. Saraf AK, Choudhury PR (1998) Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge sites. Int J Remote Sens 19(10):1825–1841CrossRefGoogle Scholar
  32. Tabesh M, Asadiyani Yekta AH, Burrows R (2009) An integrated model to evaluate losses in water distribution systems. Water Resour Manag 23:477–492. doi: 10.1007/s11269-008-9284-2 CrossRefGoogle Scholar
  33. Tanfous AD, Bédir M, Soussi M, Azaiez H, Zitouni L, Inoubli MH, Ben Boubaker K (2005) Halocinèse précoce associée au rifting jurassique dans l’Atlas central de Tunisie (région de Majoura–El Hfay). C R Géoscience 4(337):703–711CrossRefGoogle Scholar
  34. Thapinta A, Hudak PF (2003) Use of geographic information systems for assessing groundwater pollution potential by pesticides in Central Thailand. Environ Int 29:87–93CrossRefGoogle Scholar
  35. Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Trans Am Geophys Union 16:519–524Google Scholar
  36. Venkata RK, Eldho TI, Rao EP, Chithra NR (2008) A distributed kinematic wave–Philip infiltration watershed model using FEM, GIS and remotely sensed data. Water Resour Manag 22:737–755. doi: 10.1007/s11269-007-9189-5 CrossRefGoogle Scholar
  37. Wu S, Li J, Huang GH (2008) Characterization and evaluation of elevation data uncertainty in water resources modeling with GIS. Water Resour Manag 22:959–972. doi: 10.1007/s11269-007-9204-x CrossRefGoogle Scholar
  38. Xaviez S, Peter MM, Jesús C (1999) Pumping tests in heterogeneous aquifers: an analytical study of what can be obtained from their interpretation using Jacob’s method. Water Resour Res 35(4):943–952CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ismail Chenini
    • 1
  • Abdallah Ben Mammou
    • 1
  • Moufida El May
    • 2
  1. 1.Minerals Resources and Environment Laboratory, Department of Geology, Faculty of Sciences of TunisTunis El ManarTunisia
  2. 2.Laboratory of Paleoenvironment, Geomaterial and Seismic Risk, Department of Geology, Faculty of SciencesUniversity Tunis El ManarTunis El ManarTunisia

Personalised recommendations