Advertisement

Water Resources Management

, 24:239 | Cite as

Using the Multiactor-Approach in Glowa-Danube to Simulate Decisions for the Water Supply Sector Under Conditions of Global Climate Change

  • Roland BarthelEmail author
  • Stephan Janisch
  • Darla Nickel
  • Aleksandar Trifkovic
  • Thomas Hörhan
Article

Abstract

Glowa-Danube (www.glowa-danube.de) is an interdisciplinary project that aims to develop integrated strategies and tools for water and land use management in the upper Danube catchment (Germany, Austria ∼77,000 km2). The project is one of five within the Glowa research program (www.glowa.org) dealing with Global Change effects on the water cycle in six meso-scale catchments (up to 100,000 km2) in Central Europe, West Africa and the Middle East. In the Glowa-Danube project, 16 natural science and socio-economic simulation models are integrated in the coupled simulation system Danubia. This article describes the underlying concept and implementation of WaterSupply, a multiactor-based model of the water supply sector with a focus on water resource utilization and distribution of individual water supply companies. Within Danubia, WaterSupply represents the link between water supply and demand, where the former is simulated by a groundwater and a surface water model and the latter by water consumption models of four different sectors (domestic, industrial, agricultural and tourism). WaterSupply interprets the quantitative state of water resources for defined spatial and temporal units according to sustainability requirements and assesses the state of resources in relation to present water supply schemes and the dynamics of user demand. WaterSupply then seeks both to optimize the resource use of supply companies and to identify critical regions for which further adaptation of the water supply scheme will become necessary under changing climatic conditions. In this article, a brief description of the Glowa-Danube project and the integrated simulation system Danubia is followed by a short presentation of the DeepActor framework, which provides a common conceptual and technical basis for the socio-economic simulation models of Glowa-Danube. The main body of the article is devoted to the concept, the implementation and simulation results of WaterSupply. Results from different scenario calculations demonstrate the capabilities and the potential fields of application of the model.

Keywords

Multi-actor approach WaterSupply model Global change Danubia Danube Integrated water resources management 

References

  1. Alvisi S, Franchini M, Marinelli A (2003) A stochastic model for representing drinking water demand at residential level. Water Resour Manag 17(3):197–222. doi: 10.1023/A:1024100518186 CrossRefGoogle Scholar
  2. Apfelbeck J, Huigen M, Krimly T (2007) The importance of spatial, temporal and social scales in Integrated modeling; simulating the effects of climatic change on district- and farm-level decision making in the Danube catchment area. 81st Annual Conference, April 2–4, 2007, Reading University, UK. http://purl.umn.edu/7984
  3. Athanasiadis I, Mentes A, Mitkas P, Mylopoulos Y (2005) A hybrid agent-based model for estimating residential water demand. Simulation 81(3):175–187CrossRefGoogle Scholar
  4. Axtell R (2000) Why agents? On the varied motivations for agent computing in the social sciences. Technical report 17, Center on Social and Economics Dynamics—The Brookings Institution. http://www.brookings.edu/es/dynamics/papers/agents/agents.pdf (March 2009)
  5. Barth M, Hennicker R, Kraus A, Ludwig M (2004) Danubia: an integrative simulation system for global research in the upper danube basin. Cybern Syst 35(7–8):639–666CrossRefGoogle Scholar
  6. Barthel R, Nickel D, Meleg A, Trifkovic A, Braun J (2005) Linking the physical and the socio-economic compartments of an integrated water and land use management model on a river basin scale using an object-oriented water supply model. Phys Chem Earth 30(6–7):389–397Google Scholar
  7. Barthel R, Janisch S, Schwarz N, Trifkovic A, Nickel D, Schulz C, Mauser W (2008a) An integrated modelling framework for simulating regional-scale actor responses to global change in the water domain. Environ Model Softw 23:1095–1121. doi: 10.1016/j.envsoft.2008.02.004 CrossRefGoogle Scholar
  8. Barthel R, Mauser W, Braun J (2008b) Integrated modelling of global change effects on the water cycle in the upper Danube catchment (Germany)—the groundwater management perspective. In: Carillo JJ, Ortega MA (eds) Groundwater flow understanding from local to regional scale. International association of hydrogeologists, selected papers on hydrogeology, vol 12. Taylor & Francis, New York, pp 47–72Google Scholar
  9. Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (eds) (2008) Climate change and water. Technical paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, pp 210. http://www.ipcc.ch/pdf/technical-papers/climate-change-water-en.pdf
  10. BAYSTMUGV (2003) Trockenperiode 2003—Auswirkungen auf das Grundwasser. Bayerisches Staatsministerium für Umwelt, Gesundheit und VerbraucherschutzGoogle Scholar
  11. Berger T, Birner R, Diaz J, McCarthy N, Wittmer H (2007) Capturing the complexity of water uses and water users within a multi-agent framework. Water Resour Manag 21(1):129–148CrossRefGoogle Scholar
  12. BMBF (2008) GLOWA—global change and the hydrological cycle. German Ministry of Research and Education—BMBF, IHP-HWRP reports, vol 7, ISSN 1640-1180, p 69Google Scholar
  13. Bouwer H (2002) Integrated water management for the 21st century: problems and solutions. J Irrig Drain Eng 128(4):193–202CrossRefGoogle Scholar
  14. Davidsson P (2002) Agent based social simulation: a computer science view. JASSS 5(no. 1). http://jasss.soc.surrey.ac.uk/5/1/7.html
  15. Davis DN (2000) Agent-based decision support framework for water supply infrastructure rehabilitation and development. Int J Comput Environ Urban Syst 24:173–190CrossRefGoogle Scholar
  16. Dow K, O’Connor RE, Yarnal B, Carbone GJ, Jocoy CL (2007) Why worry? Community water system managers’ perceptions of climate vulnerability. Glob Environ Change 17:228–237CrossRefGoogle Scholar
  17. Ekinci Ö, Konak H (2009) An optimization strategy for water distribution networks. Water Resour Manag 23(1):169–185. doi: 10.1007/s11269-008-9270-8. http://www.springerlink.com/content/ex27278317915252 CrossRefGoogle Scholar
  18. Emmert M (1999) Die Wasserversorgung im deutschen Einzugsgebiet der Donau. Wasserwirtschaft 89(7–8):396–403Google Scholar
  19. Ernst A, Schulz C, Schwarz N, Janisch S (2005) Shallow and deep modeling of water use in a large, spatially explicit coupled simulation system. In: Representing social reality: approaches and results. Proc. 3rd conf. of the European social simulation association, ESSA 05Google Scholar
  20. Ernst A, Schulz C, Schwarz N, Janisch S (2008) Modelling of water use decisions in a large, spatially explicit, coupled simulation system. In: Edmonds B, Hernández C, Troitzsch KG (eds) Social simulation: technologies, advances and new discoveries. Information Science Reference, Hershey, NY, pp 138–149Google Scholar
  21. Espinasse B, Franchesquin N (2005) Multiagent modeling and simulation of hydraulic management of the Camargue. Simulation 81(3):201–221CrossRefGoogle Scholar
  22. Feuillette S, Bousquet F, Le Goulven P (2003) SINUSE: a multi-agent model to negotiate water demand management on a free access water table. Environ Model Softw 18(5):413–427CrossRefGoogle Scholar
  23. Gaiser T, Araújo JC, Frischkorn H, Krol M (2003) Global change and regional impacts: water availability and vulnerability of ecosystems and society in semi-arid northeast of Brazil. Springer, HeidelbergGoogle Scholar
  24. Gaiser T, Printz A, Schwarz von Raumer HG, Götzinger J, Dukhovny VA, Barthel R, Sorokin A, Tuchin A, Kiourtsidis C, Ganoulis I, Stahr K (2007) Development of a regional model for integrated management of water resources at the basin scale. Phys Chem Earth 33:175–182. doi: 10.1016/j.pce.2007.04.018 Google Scholar
  25. Gilbert N, Troitzsch KG (2005) Simulation for the social scientist, 2nd edn. Open University Press, Philadelphia, PAGoogle Scholar
  26. GLOWA-Danube (Hrsg.) (2008) Global Change Atlas Einzugsgebiet Obere Donau. Ludwigs-Maximilians-Universität, MünchenGoogle Scholar
  27. GWP—Global Water Partnership (2000) Integrated water resources management. GWP Technical Advisory Committee. TAC Background Papers No.4. GWP, Stockholm, Sweden, pp 67Google Scholar
  28. Haakh F (2007) Klimawandel und Wasserversorgung—Auswirkungen auf das Wasserdargebot, die Wasserqualität und die Versorgungssicherheit; Stuttgarter Berichte zur Siedlungswasserwirtschaft; 192; 22. Trinkwasserkolloquium am 14. Februar 2008. Leitung: Ulrich Rott; München: Oldenbourg Industrieverl. 2008Google Scholar
  29. Hajkowicz S, Kerry C (2007) Review of multiple criteria analysis for water resource planning and management. Water Resour Manag 21(9):1553–1566. doi: 10.1007/s11269-006-9112-5. http://www.springerlink.com/content/k2704gh565550mk5 CrossRefGoogle Scholar
  30. Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, The U.S. geological survey modular ground-water model—user guide to modularization concepts and the ground-water flow process. US Geological Survey, Open-File Report 00-92Google Scholar
  31. Hennicker R, Ludwig M (2005) Property-driven development of a coordination model for distributed simulations. In: Formal methods for open object-based distributed systems, 7th IFIP WG 6.1 International Conference, FMOODS 2005, Athens, Greece, Lecture Notes in Computer Science, vol 3535, pp 290–305Google Scholar
  32. Hennicker R, Ludwig M (2006) Design and implementation of a coordination model for distributed simulations. In: Mayr CH, Breu R (eds) Proceedings modellierung 2006 (MOD’06). Lect. notes informatics, vol P-82. Gesellschaft für Informatik, Bonn, pp 83–97Google Scholar
  33. Jobson HE (1989) Users manual for an open-channel stream flow model based on the dif-fusion analogy: U.S. Geological Survey Water-Resources Investigations 89-4133. USGS, Reston, VA, p 73Google Scholar
  34. Kirshen P, Raskin P, Hansen E (1995) WEAP: a tool for sustainable water resources planning in the border region. In: Domenica M (ed) Integrated water resources planning for the 21st century. Proceedings of the 22nd annual conference of ASCE. American Society of Civil Engineers, Cambridge, MA, pp 7–11Google Scholar
  35. Koch H, Grünewald U (2008) A comparison of modelling systems for the development and revision of water resources management plans. Water Resour Manag 23:1403–1422. doi: 10.1007/s11269-008-9333-x. http://www.springerlink.com/content/q1071102085h1746 CrossRefGoogle Scholar
  36. Krysanova V, Hattermann F, Wechsung F (2007) Implications of complexity and uncertainty for integrated modelling and impact assessment in river basins. Environ Model Softw 22(5):701–709CrossRefGoogle Scholar
  37. López-Paredes A, Sauri D, Galán J (2005) Urban water management with artificial societies of agents: the FIRMABAR simulator. Simulation 81(3):189–199CrossRefGoogle Scholar
  38. Ludwig R, Mauser W, Niemeyer S, Colgan A, Stolz R, Escher-Vetter H, Kuhn M, Reichstein M, Tenhunen J, Kraus A, Ludwig M, Barth M, Hennicker R (2003) Web-based modelling of energy, water and matter fluxes to support decision making in mesoscale catchments—the integrative perspective of Glowa-Danube. Phys Chem Earth 28:621–634Google Scholar
  39. Macy MW, Willer R (2002) From factors to actors: computational sociology and agent-based modeling. Ann Rev Sociol 28:143–166CrossRefGoogle Scholar
  40. Maia R, Silva C (2009) DSS application at a river basin scale, taking into account water resources exploitation risks and associated costs: the Algarve Region. Desalination 237(1–3):81–91. doi: 10.1016/j.desal.2007.12.024 CrossRefGoogle Scholar
  41. Mauser W, Strasser U (2005) Statusreport Glowa-Danube integrative techniques, scenarios and strategies regarding global change of the water cycle. Project duration: 01.03.2004-28.02.2007. Report period: 01.03.2004–28.02.2005. http://www.Glowa-danube.de/PDF/reports/statusreport_phase2.pdf
  42. Mauser W, Prasch M, Strasser U (2007) Physically based modelling of climate change impact on snow cover dynamics in Alpine Regions using a stochastic weather generator. http://www.mssanz.org.au/modsim07/papers/39_s55/Phisycallybased_s55_Mauser_.pdf
  43. Moss S, Downing T, Rouchier J (2000) Demonstrating the role of stakeholder participation: an agent based social simulation model of water demand policy and response. http://cfpm.org/~scott/water-demand/demand-pilot1.pdf
  44. Nickel D, Barthel R, Schmid C, Braun J (2005) Large-scale water resources management within the framework of Glowa-Danube—the water supply model. Phys Chem Earth 30(6–7):383–388Google Scholar
  45. Quinn PF, Hewett CJM, Doyle A (2004) Integrated water management: a multi-scale framework for decision support. In: Improving the balance between economic agricultural production and environmental quality through enhanced decision making. OECD, ParisGoogle Scholar
  46. Rodgers C, van de Giesen N, Laube W, Vlek PLG, Youkhana E (2007) The GLOWA Volta project: a framework for water resources decision-making and scientific capacity building in a transnational West African Basin. Water Resour Manag 21:295–313CrossRefGoogle Scholar
  47. Rumbaugh J, Jacobson I, Booch G (2005) The unified modeling language reference manual, 2nd edn. Pearson Education, Upper Saddle River, NJGoogle Scholar
  48. Russell S, Norvig P (2003) Artificial intelligence: a modern approach, 2nd edn. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  49. San Antonio Water System (2009) San Antonio Water System: stage 1 drought restrictions. http://www.saws.org/conservation/aquifermgmt/stage1.shtml (last visited Feb 2009)
  50. Sax M, Schmude J, Dingeldey A (2007) Water and tourism simulating the tourist water use in the Upper Danube catchment area. In: Reducing the vulnerability of societies to water related risks at the basin scale. Proceedings of the third international symposium on integrated water resources management, Bochum, Germany, September 2006. IAHS Publ. 317, pp 66–71Google Scholar
  51. Schwarz N, Ernst A (2009) Agent-based modeling of the diffusion of environmental innovations—an empirical approach. Technol Forecast Soc Change 76:497–511CrossRefGoogle Scholar
  52. Scoccimarro M, Walkera A, Dietricha C, Schreidera S, Jakeman T, Rossb H (1999) A framework for integrated catchment assessment in northern Thailand. Environ Model Softw 14(6):567–577CrossRefGoogle Scholar
  53. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007) Climate change 2007: the physical science basis. In: Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  54. Thoyer S, Morardet S, Rio P, Simon L, Goodhue R, Rausser G (2001) A bargaining model to simulate negotiations between water users. JASSS 4 (2). http://jasss.soc.surrey.ac.uk/4/2/6.html
  55. Tillmann D, Larsen TA, Pahl-Wostl C, Gujer W (1999) Modeling the actors in water supply systems. Water Sci Technol 39(4):203–211CrossRefGoogle Scholar
  56. Timmermans J (2009) Interactive actor analysis for rural water management in The Netherlands: an application of the transactional approach. Water Resour Manag 23:1211–1236CrossRefGoogle Scholar
  57. UNESCO (1987) Methodological guidelines for the integrated environmental evaluation of water resources development. United Nations Environment Programme, ParisGoogle Scholar
  58. van der Keur P, Henriksen HJ, Refsgaard JC, Brugnach M, Pahl-Wostl C, Dewulf A, Buiteveld H (2008) Identification of major sources of uncertainty in current IWRM Practice. Illustrated for the Rhine Basin. Water Resour Manag 22:1677–1708CrossRefGoogle Scholar
  59. Victorian Water Industry Ass. Inc. (2005) Victorian Uniform Drought Water Restriction. Guidelines (Final) http://www.vicwater.org.au/uploads/Water%20Restrictions/Final%20Version%20Uniform%20Drought%20Water%20Restriction%20Guidelines.pdf (last visited Feb 2009)
  60. Volk M, Hirschfeld J, Schmidt G, Bohn C, Dehnhardt A, Liersch S, Lymburner L (2007) A SDSS-based ecological–economic modelling approach for integrated river basin management on different scale levels—the project FLUMAGIS. Water Resour Manag 21:12. doi: 10.1007/s11269-007-9158-z
  61. Watkins D, Kirby K, Punnett R (2004) Water for the everglades: application of the south Florida systems analysis model. J Water Resour Plan Manage 130(5):359–366CrossRefGoogle Scholar
  62. Weiss G (ed) (1999) Multiagent systems: a modern approach to distributed artificial intelligence. The MIT, Cambridge, MAGoogle Scholar
  63. Wu C (1995) Integrated water resources planning of quantity and quality in Taiwan. In: Domenica M (ed) Integrated water resources planning for the 21st century. Proceedings of the 22nd annual conference of the american society of civil engineers. American Society of Civil Engineers, Cambridge, MA, pp 65–68Google Scholar
  64. Xu C-Y, Singh VP (1998) A review on monthly water balance models for water resources investigations. Water Resour Manag 12(1):31–50. doi: 10.1023/A:1007916816469. http://www.springerlink.com/content/p88215w6n3314q1l Google Scholar
  65. Yamout G, El-Fadel M (2005) An optimization approach for multi-sectoral water supply management in the greater Beirut area. Water Resour Manag 19:791–812CrossRefGoogle Scholar
  66. Zimmer M (2008) Assessing global change from a regional perspective: an economic close-up of climate change and migration. Dissertation, Volkswirtschaftliche Fakultät, München. http://edoc.ub.uni-muenchen.de/9139/2/Zimmer_Markus.pdf

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Roland Barthel
    • 1
    Email author
  • Stephan Janisch
    • 2
  • Darla Nickel
    • 3
  • Aleksandar Trifkovic
    • 1
  • Thomas Hörhan
    • 4
  1. 1.Institute of Hydraulic EngineeringUniversität StuttgartStuttgartGermany
  2. 2.Institute of Computer Science—Programming and Software EngineeringLudwig-Maximilians Universität MunichMunichGermany
  3. 3.Ecologic—Institute for International und European Environmental PolicyBerlinGermany
  4. 4.Federal Ministry of Agriculture, Forestry, Environment and Water Management, Division VII/1National Water ManagementViennaAustria

Personalised recommendations