Skip to main content

Advertisement

Log in

Use of L-Moments Approach for Regional Flood Frequency Analysis in Sicily, Italy

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Extremely great floods are among environmental events with the most disastrous consequences for the entire world. Estimates of their return periods and design values are of great importance in hydrologic modeling, engineering practice for water resources and reservoirs design and management, planning for weather-related emergencies, etc. Regional flood frequency analysis resolves the problem of estimating the extreme flood events for catchments having short data records or ungauged catchments. This paper analyzes annual maximum peak flood discharge data recorded from more than 50 stream flow gauging sites in Sicily, Italy, in order to derive regional flood frequency curves. First these data are analyzed to point out some problems concerning the homogeneity of the single time series. On the basis of the L-moments and using cluster analysis techniques, the entire region is subdivided in five subregions whose homogeneity is tested using the L-moments based heterogeneity measure. Comparative regional flood frequency analysis studies are carried out employing the L-moments based commonly used frequency distributions. Based on the L-moment ratio diagram and other statistic criteria, generalized extreme value (GEV) distribution is identified as the robust distribution for the study area. Regional flood frequency relationships are developed to estimate floods at various return periods for gauged and ungauged catchments in different subregions of the Sicily. These relationships have been implemented using the L-moment based GEV distribution and a regional relation between mean annual peak flood and some geomorphologic and climatic parameters of catchments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Aronica GT, Fabio P, Candela A, Santoro M (2008) Stagionalità e regime delle piene in Sicilia. In: Proceedings of XXXI convegno nazionale di idraulica e costruzioni idrauliche, Perugia, Italy

  • Burn DH (1989) Cluster analysis as applied to regional flood frequency. J Water Resour Plan Manage 115(5):567–582

    Article  Google Scholar 

  • Cannarozzo M, D’Asaro F, Ferro V (1995) Regional rainfall and flood frequency analysis for Sicily using the two component extreme value distribution. Hydrol Sci J 40(1):19–42

    Google Scholar 

  • Chowdhury JU, Stedinger JR, Lu LH (1991) Goodness-of-fit tests for regional generalized extreme value flood distributions. Water Resour Res 27(7):1765–1776. doi:10.1029/91WR00077

    Article  Google Scholar 

  • Dalrymple T (1960) Flood frequency analysis. Technical report water supply pap., 1543-A, US Geol Surv

  • Ferro V, Porto P (2006) Flood frequency analysis for Sicily, Italy. J Hydrol Eng 2(11):110–122. doi:10.1061/(ASCE)1084-0699(2006)11:2(110)

    Article  Google Scholar 

  • Gioia A, Iacobellis V, Margiotta MR (2005) Theoretical derivation of the index flood. Adv Geosci 2:249–253

    Google Scholar 

  • Greenwood JA, Landwehr JM, Matalas NC, Wallis JR (1979) Probability weighted moments: definition and relation to parameters of several distributions expressable in inverse form. Water Resour Res 15:1049–1054. doi:10.1029/WR015i005p01049

    Article  Google Scholar 

  • Grover PL, Burn DH, Cunderlik JM (2002) A comparison of index flood estimation procedures for ungauged catchments. Can J Civ Eng 29(5):734–741. doi:10.1139/l02-065

    Article  Google Scholar 

  • Gupta VK, Mesa OJ, Dawdy DR (1994) Multiscaling theory of flood peaks: regional quantile analysis. Water Resour Res 30(12):3405–3421. doi:10.1029/94WR01791

    Article  Google Scholar 

  • Haktanir T (1992) Comparison of various flood frequency distributions using annual flood peaks data of rivers in Anatolia. J Hydrol (Amst) 136:1–31. doi:10.1016/0022-1694(92)90002-D

    Article  Google Scholar 

  • Hosking JRM (1990) L-moments: analysis and estimation of distributions using linear combinations of order statistics. J Roy Statist Soc Ser B Methodological 52:105–124

    Google Scholar 

  • Hosking JRM, Wallis JR (1988) The effect of intersite dependence on regional flood frequency analysis. Water Resour Res 24(4):588–600. doi:10.1029/WR024i004p00588

    Article  Google Scholar 

  • Hosking JRM, Wallis JR (1993) Some statistics in regional frequency analysis. Water Resour Res 29(2):271–181. doi:10.1029/92WR01980

    Article  Google Scholar 

  • Hosking JRM, Wallis JR (1997) Regional frequency analysis: an approach based on L-moments. Cambridge University Press, Cambridge

    Google Scholar 

  • Hosking JRM, Wallis JR, Wood EF (1985) An appraisal of regional flood frequency procedure in the UK studies. Report 30:85–109

    Google Scholar 

  • Institute of Hydrology (1999) Flood estimation handbook. Wallingford, 5 volumes, ISBN 0948540 94X

  • Jenkinson AF (1955) The frequency distribution of the annual maximum (or minimum) of meteorological elements. Q J R Meteorol Soc London 81:158–171

    Article  Google Scholar 

  • Jingyi Z, Hall MJ (2004) Regional flood frequency analysis for the Gan-Ming River basin in China. J Hydrol (Amst) 296:98–117. doi:10.1016/j.jhydrol.2004.03.018

    Article  Google Scholar 

  • Kjeldsen TR, Jones DA (2006) Prediction uncertainty in a median-based index flood method using L moments. Water Resour Res 42:W07414. doi:10.1029/2005WR004069

    Article  Google Scholar 

  • Kjeldsen TR, Smithers JC, Schulze RE (2002) Regional flood frequency analysis in the KwaZulu-Natal province, South Africa, using the index-flood method. J Hydrol (Amst) 255:194–211. doi:10.1016/S0022-1694(01)00520-0

    Article  Google Scholar 

  • Kumar R, Chatterjee C (2005) Regional flood frequency analysis using L-moments for North Brahmaputra region of India. J Hydrol Eng 10(1):1–7. doi:10.1061/(ASCE)1084-0699(2005)10:1(1)

    Article  Google Scholar 

  • Kumar P, Guttarp P, Foufoula-Georgiu E (1994) A probability weighted moment test to assess simple scaling. Stoch Hydrol Hydraul 8:173–183. doi:10.1007/BF01587233

    Article  Google Scholar 

  • Kumar R, Singh RD, Seth SM (1999) Regional flood formulas for seven subzones of zone 3 of India. J Hydrol Eng 4(3):240–244. doi:10.1061/(ASCE)1084-0699(1999)4:3(240)

    Article  Google Scholar 

  • Kumar R, Chatterjee C, Kumar S, Lohani AK, Singh RD (2003) Development of regional flood frequency relationships using L-moments for Middle Ganga Plains Subzone 1(f) of India. Water Resour Manage 17(4):243–257. doi:10.1023/A:1024770124523

    Article  Google Scholar 

  • Lastoria B, Simonetti MR, Casaioli M, Mariani S, Monacelli G (2006) Socio-economic impacts of major floods in Italy from 1951 to 2003. Adv Geosciences 7:223–229

    Article  Google Scholar 

  • Lettenmaier DP, Potter KW (1985) Testing flood frequency estimation methods using a regional flood generation model. Water Resour Res 21(12):1903–1914. doi:10.1029/WR021i012p01903

    Article  Google Scholar 

  • Lettenmaier DP, Wallis JR, Wood EF (1987) Effect of regional heterogeneity on flood frequency estimation. Water Resour Res 23(2):313–323. doi:10.1029/WR023i002p00313

    Article  Google Scholar 

  • Lim YH, Lye LM (2003) Regional flood estimation for ungauged basins in Sarawak, Malaysia. Hydrol Sci J 48(1):79–94. doi:10.1623/hysj.48.1.79.43477

    Article  Google Scholar 

  • National Research Council (1988) Estimating probabilities of extreme floods, methods and recommended research. Report by the Committee on “Techniques for estimating probabilities of extreme floods”. National Academy Press, Washington, DC

    Google Scholar 

  • NERC—Natural Environment Research Council (1975) Flood studies report, vol I—Hydrologic studies. NERC, London

  • Noto L, La Loggia G, Pirrello M (2001) Un sistema informativo territoriale per l’analisi del rischio idraulico delle infrastrutture viarie. In: Proceedings of 5a conferenza nazionale ASITA, Rimini, Italy

  • Ouarda TBMJ, Bâ KM, Diaz-Delgado C, Cârsteanu A, Chokmani K, Gingras H, Quentin E, Trujillo E, Bobée B (2008) Intercomparison of regional flood frequency estimation methods at ungauged sites for a Mexican case study. J Hydrol (Amst) 348:40–58. doi:10.1016/j.jhydrol.2007.09.031

    Article  Google Scholar 

  • Peel MC, Wang QJ, Vogel RM, McMahon T (2001) The utility of L-moment ratio diagrams for selecting a regional probability distribution. J Sci Hydrologiques 46(1):147–155

    Google Scholar 

  • Pilgrim DH, Cordery I (1993) Flood Runoff. In: Maidment DR (ed) Handbook of hydrology. McGraw-Hill, New York, pp 9.1–9.42

    Google Scholar 

  • Potter KW, Lettenmaier DP (1990) A comparison of regional flood frequency estimation methods using a resampling method. Water Resour Res 16(3):415–424

    Google Scholar 

  • Rossi F, Fiorentino M, Versace P (1984) Two component extreme value distribution for flood frequency analysis. Water Resour Res 20(7):847–856. doi:10.1029/WR020i007p00847

    Article  Google Scholar 

  • Sene KJ, Houghton-Carr HA, Hachache A (2001) Preliminary flood frequency estimates for Lebanon. Hydrol Sci J 46(5):659–676

    Google Scholar 

  • Stedinger JR, Lu LH (1995) Appraisal of regional and index flood quantile estimators. Stoch Hydrol Hydraul 9(1):49–75. doi:10.1007/BF01581758

    Article  Google Scholar 

  • Stedinger JR, Vogel RM, Foufoula-Georgiou E (1993) Frequency analysis of extreme events. In: Maidment DR (ed) Handbook of hydrology. McGraw-Hill, New York, pp 18.1–18.66

    Google Scholar 

  • U. S. Geological Survey (1982) Guidelines for determining flood flow frequency. Bulletin #17B of the Hydrology Subcommittee. Reston, Virginia, pp 14–20

  • Vogel RM, Fennessey NM (1993) L-moment diagrams should replace product moment diagrams. Water Resour Res 29(6):1745–1752. doi:10.1029/93WR00341

    Article  Google Scholar 

  • Vogel RM, Thomas WO, McMahon TA (1993a) Flood-flow frequency model selection in southwestern United-States. J Water Resour Plan Manage 119(3):353–366. doi:10.1061/(ASCE)0733-9496(1993)119:3(353)

    Article  Google Scholar 

  • Vogel RM, McMahon TA, Chiew FHS (1993b) Floodflow frequency model selection in Australia. J Hydrol (Amst) 146(1–4):421–449. doi:10.1016/0022-1694(93)90288-K

    Article  Google Scholar 

  • Wallis JR, Wood EF (1985) Relative accuracy of log Pearson III procedures. J Hydraul Eng 111(7):1043–1056

    Article  Google Scholar 

  • Wallis JR, Matalas NC, Slack JR (1974) Just a moment! Water Resour Res 10(2):211–219. doi:10.1029/WR010i002p00211

    Article  Google Scholar 

  • Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Statistic Assoc 58:236–244. doi:10.2307/2282967

    Article  Google Scholar 

  • Wiltshire SE (1986) Regional flood frequency analysis. I: Homogeneity statistics. J Hydrol Sci 31(3):321–333

    Article  Google Scholar 

  • World Meteorological Organization (1996) Guide to meteorological instruments and methods of observations. WMO publications n°8

  • Zafirakou-Koulouris A, Vogel RM, Craig SM, Habermeier J (1998) L-moment diagrams for censored observations. Water Resour Res 34(5):1241–1249. doi:10.1029/97WR03712

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo V. Noto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noto, L.V., La Loggia, G. Use of L-Moments Approach for Regional Flood Frequency Analysis in Sicily, Italy. Water Resour Manage 23, 2207–2229 (2009). https://doi.org/10.1007/s11269-008-9378-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-008-9378-x

Keywords