Skip to main content

Advertisement

Log in

Runoff Changes in the Šumava Mountains (Black Forest) and the Foothill Regions: Extent of Influence by Human Impact and Climate Change

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

The main aim of our research project was to determine the extent to which the outflow can be influenced by human interventions in three selected water basins in the Šumava Mountains (Black Forest) and its foothills. The rainfall-runoff analyses using both the single-mass and double-mass curves over the period of hydrologic observations were taken as a preliminary methodology. Standard statistical testing methods Wilcoxon and Mann–Kendall non-parametric tests were applied to detect the trends. Besides mean discharge, precipitation, snow and air temperature trends, analysis of land cover change and human impact on the river network and development of drainage areas were also carried out. The greatest deviations were widely observed in the period between the second half of the 1970s and the first half of the 1980s. The whole system came slowly back to its initial condition in the early 1990s. The runoff trend deviation was related to natural and human factors, mainly to current climatic changes, river network modification and changes of land cover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Bae D-Y, Jung W II, Chang H (2008) Long-term trend of precipitation and runoff in Korean river basins. Hydrol Process 22(14):2644–2656. doi:10.1002/hyp.6861

    Article  Google Scholar 

  • Berryman D, Bobeee B, Cluis D, Haemmerli J (1988) Nonparametric tests for trend detection in water quality time series. Water Resour Bull 24(3):545–556.

    Google Scholar 

  • Bičík I et al (2003) Vývoj struktury ploch v povodí Otavy. In: Langhammer J (ed) Hodnocení vlivu změn přírodního prostředí na vznik a vývoj povodní. Faculty of Science, Charles University, Praha, Czech Republic, pp 113–121

  • Birsan MV, Molnar P, Burlando P, Pfaundler M (2005) Streamflow trends in Switzerland. J Hydrol (Amst) 314(1–4):312–329. doi:10.1016/j.jhydrol.2005.06.008

    Article  Google Scholar 

  • Blažková Š, Kolářová S (1994) Vliv odlesnění na hydrologický režim v oblasti Jizerských hor. T.G. Masaryk Water Research Institute, Praha, Czech Republic

  • Burn DH et al (2004) Hydrological trends and variability in the Liard River basin. Hydrol Sci J 49(1):53–68. doi:10.1623/hysj.49.1.53.53994

    Article  Google Scholar 

  • Chaves J, Neill C, Gemer S, Neto SG, Krusche A, Elsenbeer H (2008) Land management impacts on runoff sources in small Amazon watersheds. Hydrol Process 22(12):1766–1775. doi:10.1002/hyp.6803

    Article  Google Scholar 

  • Chen H, Guo S, Xu CY, Singh VP (2007) Historical temporal trends of hydro-climatic variables and runoff response to climate variability and their relevance in water resource management in the Hanjiang basin. J Hydrol (Amst) 344(3–4):171–184. doi:10.1016/j.jhydrol.2007.06.034

    Article  Google Scholar 

  • Cosandey C, Andreassian V, Martin C, Didon-Lescot JF, Lavabre J, Folton N, Mathys N, Richard D (2005) The hydrological impact of the mediterranean forest: a review of French research. J Hydrol (Amst) 301(1):235–249. doi:10.1016/j.jhydrol.2004.06.040

    Article  Google Scholar 

  • Dennis RH, Lonna MF (2006) Regional Kendall test for trend. Environ Sci Technol 40:13

    Google Scholar 

  • Doležal F et al (2004) Bilanžní odhady příspèvů odvodňovacích soustav k průběhu povodní. Research Institute of Ameliorations and Soil Conservation, Praha, Czech Republic

  • Föhrer N et al (2001) Hydrological response to land use changes on the catchment scale. Phys Chem Earth 26:577–582

    Google Scholar 

  • Fu G, Chen S, Liu C, Shepard D (2004) Hydro-climatic trends of the Yellow River basin for the last 50 years. Clim Change 65:149–178. doi:10.1023/B:CLIM.0000037491.95395.bb

    Article  Google Scholar 

  • Fu G, Charles SP, Chiew FH (2007a) A two-parameter climate elasticity of streamflow index to assess climate change effects on annual streamflow. Water Resour Res 43:W11419. doi:10.1029/2007WR005890

    Article  Google Scholar 

  • Fu G, Charles SP, Viney NR, Chen S, Wu JQ (2007b) Impacts of climate variability on stream-flow in the Yellow River. Hydrol Process 21(25):3431–3439. doi:10.1002/hyp.6574

    Article  Google Scholar 

  • Gan TY (1998) Hydroclimatic trends and possible climatic warming in the Canadian Prairies. Water Resour Res 34(11):3009–3015

    Article  Google Scholar 

  • Goudie A (1992) The human impact on the natural environment. Blackwell, Oxford, UK

    Google Scholar 

  • Hais M (2003) Vývoj a změny land coveru v povodí Otavy za posledních 15 let. In: Langhammer J (ed) Hodnocení vlivu změn přírodního prostředí na vznik a vývoj povodní. Faculty of Science, Charles University, Praha, Czech Republic, pp 122–133

  • Hais M (2004) Influence of drainage on landscape functioning in Šumava National Park. In: Hermann A (ed) International conference on hydrology of mountains environments. Berchtesgaden, Federal Republic of Germany

    Google Scholar 

  • Hintnaus I (2008) Změny ve vývoji krajiny v pramenné oblasti Blanice. BSc thesis, Faculty of Science, Charles University, Praha, Czech Republic

  • Huang M, Zhang L, Gallichand J (2003) Runoff responses to afforestation in a watershed of the Loess Plateau, China. Hydrol Process 17(13):2599–2609. doi:10.1002/hyp.1281

    Article  Google Scholar 

  • Hundecha Y, Bárdossy A (2004) Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model. J Hydrol (Amst) 292:281–295. doi:10.1016/j.jhydrol.2004.01.002

    Article  Google Scholar 

  • Huo Z, Feng S, Kang S, Li W, Chen S (2008) Effect of climate changes and water-related human activities on annual stream flows of the Shiyang river basin in arid north-west China. Hydrol Process 22(16):3155–3167. doi:10.1002/hyp.6900

    Article  Google Scholar 

  • Juckem PF, Hunt RJ, Anderson MP, Robertson DM (2008) Effects of climate and land management change on streamflow in the driftless area of Wisconsin. J Hydrol (Amst) 355(1–4):123–130. doi:10.1016/j.jhydrol.2008.03.010

    Article  Google Scholar 

  • Kavan J (2004) Změna odtokových poměrů v povodí Ostružné. BSc thesis, Faculty of Science, Charles University, Praha, Czech Republic

  • Kendall MG (1975) Rank correlation methods. Charles Griffin, London

    Google Scholar 

  • Klöcking B, Haberlandt U (2002) Impact of landuse changes on water dynamics—a case study in teperate meso and macroscale river basin. Phys Chem Earth 27:619–629

    Google Scholar 

  • Kothvari UC, Singh VP (1996) Rainfall and temperature trends in India. Hydrol Process 10(3):357–372. doi:10.1002/(SICI)1099-1085(199603)10:3<357::AID-HYP305>3.0.CO;2-Y

    Article  Google Scholar 

  • Kříž V (2003) Změny a zvláštnosti vodního režimu řeky Ostravice. Geografie-Sbornik CGS 108(1):36–48

    Google Scholar 

  • Kundzewicz Z, Robson A (2004) Change detection in hydrological records—a review of the methodology. Hydrol Sci J 49(1):7–20. doi:10.1623/hysj.49.1.7.53993

    Article  Google Scholar 

  • Langhammer J et al (2003) Hodnocení vlivu změn přírodního prostředí na vznik a vývoj povodní. Charles University Report-GAČR 205/03/Z046, Praha, Czech Republic

  • Libiseller C, Grimvall A (2002) Performance of partial Mann–Kendall tests for trend detection in the presence of covariates. Environmetrics 13:71–84. doi:10.1002/env.507

    Article  Google Scholar 

  • Lindström G, Bergström U (2004) Runoff trends in Sweden 1807–2002. Hydrol Sci J 49(1):69–82. doi:10.1623/hysj.49.1.69.54000

    Article  Google Scholar 

  • Ludwig W, Serrat P, Cesmat L, Esteves JG (2004) Evaluating the impact of the recent temperature increase on the hydrology of the Têt River (Southern France). J Hydrol (Amst) 289(1–4):204–221. doi:10.1016/j.jhydrol.2003.11.022

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259. doi:10.2307/1907187

    Article  Google Scholar 

  • Meyer WB (2001) Human impact on the Earth. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Radziejewski M, Kundzewicz Z (2004) Detectability of changes in hydrological records. Hydrol Sci J 49(1):39–51. doi:10.1623/hysj.49.1.39.54002

    Article  Google Scholar 

  • Robinson M et al (2003) Studies of the impact of forest on peak flows and baseflows: a European perspective. For Ecol Manage 186:85–97. doi:10.1016/S0378-1127(03)00238-X

    Article  Google Scholar 

  • Samaniego L, Bárdossy A (2005) Robust parametric models of runoff characteristics at the mesoscale. J Hydrol (Amst) 303:136–150. doi:10.1016/j.jhydrol.2004.08.022

    Article  Google Scholar 

  • Searcy JK, Hardison CH (1960) Double mass curves. Manual of hydrology: part 1 general surface water techniques. Geological Survey Water Supply Paper, p 66

  • Sochorec R (1997) Ovlivnění hydrologických charakteristik odbìry povrchové vody a vypouštěním vody do toku v povodí Odry a horního toku Moravy. Vodní hospodářství 47(9):291–292

    Google Scholar 

  • Švihla V et al (1992) Výzkumný objekt Ovesná Lhota. Research Institute of Ameliorations and Soil Conservation, Praha, Czech Republic

    Google Scholar 

  • Vesecký A et al (1961) Podnebí Československé socialistické republiky. Tables. Hydrometeorological Institute, Praha, Czech Republic

  • Vondra F (2004) Fyzickogeografická charakteristika a antropogenní ovlivnění povodí horní Blanice. BSc thesis, Faculty of Science, Charles University, Praha, Czech Republic

  • Wu W, Hall CAS, Scatena FN (2007) Modelling the impact of recent land-cover changes on the stream flows in northeastern Puerto Rico. Hydrol Process 21(21):2944–2956. doi:10.1002/hyp.6515

    Article  Google Scholar 

  • Xiong L, Guo U (2004) Trends test and change-point detection for the annual discharge series of the Yangtze River at the Xichang hydrological station. Hydrol Sci J 49(1):99–111. doi:10.1623/hysj.49.1.99.53998

    Article  Google Scholar 

  • Xu ZX, Chen YN, Li JY (2004) Impact of climate change on water resources in the Tarim River basin. Water Resour Manage 18(5):439–458. doi:10.1023/B:WARM.0000049142.95583.98

    Article  Google Scholar 

  • Yu P-S, Yang T-C, Wu C-K (2002) Impact of climate change on water resources in southern Taiwan. J Hydrol (Amst) 260(1–4):161–175. doi:10.1016/S0022-1694(01)00614-X

    Article  Google Scholar 

  • Zhang X, Zhang L, Zhao J, Rustomji P, Hairsine PB, Zhang FP (2008) Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resour Res. doi:10.1029/2007WR006711

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milada Matoušková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kliment, Z., Matoušková, M. Runoff Changes in the Šumava Mountains (Black Forest) and the Foothill Regions: Extent of Influence by Human Impact and Climate Change. Water Resour Manage 23, 1813–1834 (2009). https://doi.org/10.1007/s11269-008-9353-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-008-9353-6

Keywords

Navigation