Skip to main content
Log in

Flood hazard assessment of Atrato River in Colombia

  • Original Article
  • Published:
Water Resources Management Aims and scope Submit manuscript


The flood hazard caused by Atrato River in Quibdó, northwest of Colombia is assessed using statistical modeling techniques (Gumbel and GRADEX), hydraulic modeling with HEC-RAS and the Geographic Information Systems (GIS). Three flood hazard maps for return periods of 10, 20 and 50 years are generated. The flood hazard modeling reveals that the flooded zone is more significant out of the left (West) bank than out of the right (East) bank of Atrato River. For the three return periods the maximum depth of water reached by the river and extent of flooding are estimated. Sensitivity analysis on roughness coefficient and peak discharge is performed. For 50 year return period (Q =3054 m3/s), water depth on the left and right bank of Atrato River is 3.7 m and 3.1 m, respectively. This information is useful in defining the minimum height of flood protection structures such as dikes to protect the area from flooding. The results can be useful for evacuation planning, estimation of damages and post flood recovery efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  • Acosta Z, Ruiz D (1997) Adaptación del método Gradex en cuencas antioqueñas. Dissertation. Universidad Nacional de Colombia

  • Ahmad S, Simonovic SP (2001) A decision support tool for evaluation of impacts of flood management policies. Hydrol Sci Technol 17(1–4):11–22

    Google Scholar 

  • Ahmad S, Simonovic SP (2006) An intelligent decision support system for management of floods. Water Resour Manage 20:391–410

    Google Scholar 

  • Becker A, Grunewald U (2003) Disaster management: Flood Risk in Central Europe. Scienc 300(5622):1099–1099

    Article  Google Scholar 

  • Beven KJ, Carling PA (1992) Velocities, roughness and dispersion in a lowland River Severn. In: Carling PA, Petts GE (eds) Lowland floodplain rivers: Geopmorphological perspectives. John Wiley& Sons Ltd., Chichester, pp 71–93

    Google Scholar 

  • Blöschl G, Burlando P, Merz R, Pfaundler M, Piock-Ellena U (2000) An intercomparison of regional flood frequency methods. Eos Trans AGU 81(48), Fall Meeting Suppl., Abstract H62F-11

  • Bouvard M, Garros-Berthet H (1994) Les crues de projet des barrages: Méthode du Gradex. Bulletin du Comité Franccais des Grands Barrages, Barrages et Réservoirs, 18th ICOLD Congress, No. 2, 95 pp

  • Bontron G, Menez G, Duband D, Gautier JN (1999) Application de la methode du Gradex a des grands bassins versants; cas de la Loire au Bec d'Allier (32,000, km2). Houille Blanche 54(6):29–36

    Article  Google Scholar 

  • Cardona A, Londoño G (1991) Calibración de los parámetros del modelo de William y Hanns para cuencas antioqueñas. Dissertation, Universidad Nacional de Colombia

  • Case JE, Durán LG, López A, Moore R (1971) Tectonic investigations in Western Colombia and Eastern Panama. Bull Geol Soc Am 82:2685–2711

    Article  Google Scholar 

  • Chow VT (1959) Open Channel Hydraulics. McGraw-Hill Book Company, New York

    Google Scholar 

  • Cossio U (1994) Mapa geológico generalizado del departamento del Chocó. Escala 1:600.000 Memoria Explicativa. Ingeominas, pp 7–46

  • Congressional Natural Hazards Caucus Work Group (2001) Discussion paper for the Congressional Natural Hazards Caucus. Website:

  • Departamento Administrativo Nacional de Estadísticas-DANE (1993) V censo nacional de la población. Bogota, Colombia

  • Crosetto M, Tarantola S, Saltelli A (2000) Sensitivity and uncertainty analysis in spatial modelling based on GIS. Agriculture, Ecosystems and Environmen, pp 71–79

  • Dilley M, Chen RS, Deichmann U, Lerner-Lam AL, Arnold M with Agwe J, Buys P, Kjekstad O, Lyon B, Yetman G (2005) Natural disaster hotspots: a global risk analysis. International Bank for Reconstruction and Development/The World Bank and Columbia University, Washington, DC

  • Duband D, Garros-Berthet H (1994) Design flood determination by the Gradex method. In Bulletin du Comité Franccais des Grands Barrages, Barrages et Reservoirs (CFGB), 96 pp

  • Duque-Caro H (1990) El bloque del Chocó en el noroccidente colombiano: implicaciones estructurales, tectonoestratigráficas y paleogeográficas. Boletin Geológico Ingeominas 31(1):47–71

    Google Scholar 

  • Eastman R (1997) IDRISI Geographic Information System, User's Guide Version 2.0. Clark Labs for Geographic Technology and Geographic Analysis, Clark University, Worcester MA. [Available from Clark Labs for Geographic Technology and Geographic Analysis, Clark University, 950 Main St., Worcester, MA 01610]

  • Eslava JA (1992) La precipitación en la región del Pacífico colombiano (Lloró: el sitio más lluvioso del mundo). Revista Zenit 3:47–71

    Google Scholar 

  • Eslava JA (1994) Acerca de la distribución espacio-temporal de la precipitación en la región del pacífico Colombiano. Atmosfera 22:71–80

    Google Scholar 

  • ESRI (1997) ArcView GIS 3.2 User's manual, Redlands, CA

  • Figueroa SN, Nobre CA (1990) Precipitation distribution over central and western tropical South America. Climanálise 5:36–45

    Google Scholar 

  • Franco CJ, Pérez CA (1995) Regionalización de Caudales máximos en Antioquia. Dissertation, Universidad Nacional de Colombia

  • Freeze RA, Harlan RL (1969) Blueprint for a physically-based digitally-simulated hydrological response model. Journal of Hydrology 9:237–258

    Article  Google Scholar 

  • Garccon R (1993) The gradex method: for a statistically robust evaluation of extreme values floods based on local characteristics. Stochastic and Statistical Methods in Hydrology and Environmental Engineering. Waterloo, Canada

  • Government of Colombia (1993) World Heritage List Nomination Form. Los Katíos National Park (Colombia). Extension of the World Heritage Status hold by El Darién National Park in Panama. 15 pp

  • Guillot P, Duband D (1967) La méthode du Gradex pour le calcul de la probabilité'des cruesá partir des pluies. Coloque International sur les crues et leurévaluation. In: Proceedings of the Leningrad Symposium 15–22 August, IASH, 84:560–569

  • Guillot P (1973) Précisions sur la méthode du Gradex: utilisation de l'information logique pour l'évaluation de la crue de projet. Proceeding International Commission On Large Damns, XI Congress, Madrid 41:131–136

  • Gumbel EJ (1958) Statistics of Extremes. Columbia University Press, New York, New York

    Google Scholar 

  • Hamilton SK, Sippel SJ, Melack JM (2002) Comparison of inundation patterns in South American floodplains. Journal of Geophysical Research 107(D20). DOI 10.1029/2000JD000306

  • Hamilton SK, Sippel SJ, Melack JM (2004) Seasonal inundation patterns in two large savanna floodplains of South America: the Llanos de Moxos (Bolivia) and the Llanos del Orinoco (Venezuela and Colombia). Hydrolog Process 18(11):2103–2116

    Article  Google Scholar 

  • Horel JD, Cornejo-Garrido AG (1986) Convection Along the coastal of northern Peru during 1983: spatial and temporal variation of clouds and rainfall. Mon Weather Rev 114:2091–2105

    Article  Google Scholar 

  • Horritt MS, Mason DC, Luckman AJ (2001) Flood boundary delineation from synthetic aperture radar imagery using a statistical active contour model. Int J Remote Sensing 22(13):2489–2507

    Article  Google Scholar 

  • IDEAM (1997) National institute of hydrology, meteorology and environmental research. Hydrometeorological information system

  • Instituto Geografico Agustin Codazzi-IGAC (1977) Estudio General de Suelos del Municipio de Quibdo. Subdirección Agrológica. Instituto Geográfico Agustín Codazzi. Bogotá

  • Jonkman SN (2005) Global Perspectives on Loss of Human Life Caused by Floods. Nat Hazards 34(2):151–175

    Article  Google Scholar 

  • Macía C (1985) Características petrográficas y geoquímicas de rocas basálticas de la península del Cabo Corrientes (Serranía de Baudó). Colombia. Geología Colombiana 14:25–37

    Google Scholar 

  • Melching CS (1995) Reliability estimation. In: Singh VP (ed) Computer models for watershed hydrology. Water Resources Publications, pp 69–118

  • Mesa OJ, Poveda G, Carvajal LF (1997) Introducción al clima de Colombia. Universidad Nacional de Colombia, 390 pp

  • Merz R, Blöschl G, Piock-Ellena U (1999) Applicability of the Gradex-Method in Austria. Oesterreichische Wasser und Abfallwirtschaft 51(11–12):291–305

    Google Scholar 

  • Mic R, Galéa G, Javelle P (2002) Floods regional modeling of the Cris watershed: classical regional and reference models approach. Revue des Sciences de l'Eau 15(3):677–700

    Google Scholar 

  • Mosquera-Machado SC (2002) Analyse multi-aléas et risques naturels dans le Département du Chocó, Nord-Ouest de Colombie. Doctoral dissertation, Terre& Environnement, Section des Sciences de la Terre, Université de Genéve, Vol. 37, 159 pp

  • Mosquera-Machado SC (2006) Análisis multiriesgos de los desastres naturales del Chocó, durante las tresúltimas décadas: 1970–2000. Entorno Geográfico (in press)

  • NIBH/EESC/USP (2004) Reflections on flood impacts and proposals of mitigating public policy. Internal Report#2, SHS-EESC-USP, Sao Carlos, Brazil (in Portuguese)

  • Nygren WE (1950) The Bolivar Geosinclyne in northwestern South America. Bull Am Assoc Petroleum Geologists 4(10):1998–2006

    Google Scholar 

  • Ouarda TB, Lang M, Bobée B, Bernier J, Bois P (1999) Analysis of regional flood models utilized in France and Québec. Revue des Sciences de l'Eau 12(1):155–182

    Google Scholar 

  • Poveda G, Mesa OJ (2000) On the existence of Lloró (the rainiest locality on Earth): Enhanced ocean–land–atmosphere interaction by a low-level jet. Geophys Res Lett 27:1675–1678

    Article  Google Scholar 

  • Robayo O, Whiteaker T, Maidment D (2004) Converting a NEXRAD map to a floodplain map. Paper presented at the meeting of the American Water Resources Association, Nashville, Tennessee, May 17–19, 2004

  • Seibert J (1997) Estimation of parameter uncertainty in the hbv model. Nord Hydrol 28:247–262

    Google Scholar 

  • Sellin R, Bryant T, Loveless J (2003) An improved method for roughening floodplains on physical river models. J Hydraulics Res 41:3–14

    Article  Google Scholar 

  • Simonovic SP, Ahmad S (2005) Computer-based model for flood evacuation emergency planning. Natural Hazards 34(1):25–51

    Article  Google Scholar 

  • Smith LC (1997) Satellite remote sensing of river inundation area, stage, and discharge: A review. Hydrol Process 11:1427–1439

    Article  Google Scholar 

  • United Nation Development Programme-UNDP (2004) Reducing disaster risk: A challenge for development. United Nations Development Programme, Bureau for Crisis Prevention and Recovery, New York, 146 pp

  • US Army Corps of Engineers (USACE) (1998) HEC-RAS River Analysis System, User's Manual Version 2.2. Hydrologic Engineering Center, Davis, California

    Google Scholar 

  • Wadsworth G (1999) Flood damage statistics. Public Works Department, Napa, CA

    Google Scholar 

  • Wolfgang J, Karin F (1993) A general review of tropical South American floodplains. Wetlands Ecol Manage (Historical Archive) 2(4):231–238

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. Mosquera-Machado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mosquera-Machado, S., Ahmad, S. Flood hazard assessment of Atrato River in Colombia. Water Resour Manage 21, 591–609 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: