Skip to main content
Log in

Fitting Drought Duration and Severity with Two-Dimensional Copulas

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

This study aims to model the joint drought duration and severity distribution using two-dimensional copulas. The method of inference function for margins (IFM method) is employed to construct copulas. Two separate maximum likelihood estimations of univariate marginal distributions are performed first, then followed by a maximization of the bivariate likelihood as a function of the dependence parameters. The drought duration and severity are assumed to be exponential and gamma distributions, respectively. Several copulas are tested to determine the best data fitted copula. Droughts, defined using the Standardized Precipitation Index (SPI), of Wushantou (Taiwan) are employed as an example to illustrate the proposed methodology. The copula fitting results for drought duration and severity are quite satisfactory. The bivariate drought analyses, including the joint probabilities and bivariate return periods, based on the derived copula-based joint distribution are also investigated to demonstrate the advantages of bivariate modeling of droughts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bacchi, B., Becciu, G., and Kottegoda, N. T., 1994, ‘Bivariate exponential model applied to intensities and durations of extreme rainfall’, Journal of Hydrology 155, 225–236.

    Article  Google Scholar 

  • Bonaccorso, B., Cancelliere, A., and Rossi, G., 2003a, ‘An analytical formulation of return period of drought severity’, Stochastic Environmental Research and Risk Assessment 17(3), 157–174.

    Article  Google Scholar 

  • Bonaccorso, B., Bordi, I., Cancelliere, A., Rossi, G., and Sutera, A., 2003b, ‘Spatial variability of drought: An analysis of the SPI in Sicily’, Water Resources Management 17(4), 273 –296.

    Article  Google Scholar 

  • Cancelliere, A., Ancarani, A., and Rossi, G., 1998, ‘Susceptibility of water supply reservoirs to drought conditions’, Journal of Hydrologic Engineering ASCE 3(2), 140–148.

    Article  Google Scholar 

  • Cancelliere, A. and Salas, J. D., 2004, ‘Drought length properties for periodic-stochastic hydrologic data’, Water Resources Research 40, W02503, doi: 10.1029/2002WR001750.

    Article  Google Scholar 

  • Cherubini, U., Luciano, E., and Vecchiato W., 2004, Copula Methods in Finance, John Wiley & Sons, Chichester.

    Google Scholar 

  • Chung, C. H. and Salas, J. D., 2000, ‘Drought occurrence probabilities and risks of dependent hydrologic processes’, Journal of Hydrologic Engineering ASCE 5(3), 259–268.

    Article  Google Scholar 

  • De Michele, C. and Salvadori, G., 2003, ‘A generalized Pareto intensity-duration model of storm rainfall exploiting 2-copulas’, Journal of Geophysical Research 108(D2), 4067, doi:10.1029/2002JD002534.

    Article  Google Scholar 

  • De Michele, C., Salvadori, G., Canossi, M., Petaccia, A., and Rosso, R., 2004, ‘Bivariate statistical approach to check adequacy of dam spillway’, Journal of Hydrologic Engineering ASCE 10(1), 50–57.

    Article  Google Scholar 

  • Dracup, J. A., Lee, K. S., and Paulson, E. G., 1980a, ‘On the statistical characteristics of drought events’, Water Resources Research 16(2), 289–296.

    Article  Google Scholar 

  • Dracup, J. A., Lee, K. S., and Paulson, E. G., 1980b, ‘On the definition of droughts’, Water Resources Research 16(2), 297–302.

    Article  Google Scholar 

  • Favre, A.-C., El Adlouni, S., Perreault, L., Thiémonge, N., and Bobée, B., 2004, ‘Multivariate hydrological frequency analysis using copulas’, Water Resources Research 40, W01101, doi: 10.1029/2003WR002456.

    Article  Google Scholar 

  • Fernández, B., and Salas, J. D., 1999, ‘Return period and risk of hydrologic events. I: Mathematical formulations’, Journal of Hydrologic Engineering ASCE 4(4), 297–307.

    Article  Google Scholar 

  • Frees, E. W., Carriere, J., and Valdez, E., 1996, ‘Annuity valuation with dependent mortality’, Journal of Risk and Insurance 63(2), 229–261.

    Article  Google Scholar 

  • Frees, E. W. and Valdez, E. A., 1998, ‘Understanding relationships using copulas’, North American Actuarial Journal 2(1), 1–25.

    Google Scholar 

  • Frick, D. M., Bode, D., and Salas, J. D., 1990, ‘Effect of drought on urban water supplies. I: Drought analysis’, Journal of Hydraulic Engineering ASCE 116(6), 733–753.

    Article  Google Scholar 

  • Goel, N. K., Seth, S. M., and Chandra, S., 1998, ‘Multivariate modeling of flood flows’, Journal of Hydraulic Engineering ASCE 124(2), 146–155.

    Article  Google Scholar 

  • González, J. and Valdés, J. B., 2003, ‘Bivariate drought recurrence analysis using tree ring reconstructions’, Journal of Hydrologic Engineering ASCE 8(5), 247–258.

    Article  Google Scholar 

  • Gupta, V. K. and Duckstein, L., 1975, ‘A stochastic analysis of extreme droughts’, Water Resources Research 11(2), 221–228.

    Article  Google Scholar 

  • Guttman, N. B., 1999, ‘Accepting the standardized precipitation index: A calculation algorithm’, Journal of the American Water Resources Association 35(2), 311–322.

    Article  Google Scholar 

  • Hayes, M. J., Svoboda, M. D., Wilhite, D. A., and Vanyarkho, O.V., 1999, ‘Monitoring the 1996 drought using the standardized precipitation index’, Bulletin of the American Meteorological Society 80(3), 429–438.

    Article  Google Scholar 

  • Hürlimann, W., 2004, ‘Fitting bivariate cumulative returns with copulas’, Computational Statistics and Data Analysis 45(2), 355–372.

    Article  Google Scholar 

  • Joe, H., 1997, Multivariate Models and Dependence Concepts, Chapman and Hall, New York.

    Google Scholar 

  • Kendall, D. R. and Dracup, J. A., 1992, ‘On the generation of drought events using an alternating renewal-reward model’, Stochastic Hydrology and Hydraulics 6(1), 55–68.

    Article  Google Scholar 

  • Kim, T. W., Valdés, J. B., and Yoo, C., 2003, ‘Nonparametric approach for estimating return periods of droughts in arid regions’, Journal of Hydrologic Engineering ASCE 8(5), 237–246.

    Article  Google Scholar 

  • Klugman, S. A. and Parsa, R., 1999, ‘Fitting bivariate loss distributions with copulas’, Insurance: Mathematics and Economics 24(1–2), 139–148.

    Article  Google Scholar 

  • Loáiciga, H. A. and Leipnik, R. B., 1996, ‘Stochastic renewal model of low-flow streamflow sequences’, Stochastic Hydrology and Hydraulics 10(1), 65–85.

    Article  Google Scholar 

  • Mathier, L., Perreault, L., Bobe, B., and Ashkar, F., 1992, ‘The use of geometric and gamma-related distributions for frequency analysis of water deficit’, Stochastic Hydrology and Hydraulics 6(4), 239–254.

    Article  Google Scholar 

  • McKee, T. B., Doesken, N. J., and Kleist, J., 1993, ‘The relationship of drought frequency and duration to time scales’, Proceedings of the 8th Conference on Applied Climatology 179–184.

  • Mendes, B. V. M. and Souza, R. M., 2004, ‘Measuring financial risks with copulas’, International Review of Financial Analysis 13(1), 27–45.

    Article  Google Scholar 

  • Nelsen, R. B., 1999, An Introduction to Copulas, Springer-Verlag, New York.

    Google Scholar 

  • Rossi, G., Benedini, M., Tsakiris, G., and Giakoumakis, S., 1992, ‘On regional drought estimation and analysis’, Water Resources Management 6(4), 249–277.

    Article  Google Scholar 

  • Salas, J. D., Fu, C., Cancelliere, A., Dustin, D., Bode, D., Pineda, A., and Vincent, E., 2005, ‘Characterizing the severity and risk of drought in the Poudre River, Colorado’, Journal of Water Resources Planning and Management ASCE 131(5), 383–393.

    Article  Google Scholar 

  • Salvadori, G. and De Michele, C., 2004a, ‘Analytical calculation of storm volume statistics involving Pareto-like intensity-duration marginals’, Geophysical Resources Letters 31, L04502, doi:10.1029/2003GL018767.

    Article  Google Scholar 

  • Salvadori, G. and De Michele, C., 2004b, ‘Frequency analysis via copulas: Theoretical aspects and applications to hydrological events’, Water Resources Research 40, W12511, doi:10.1029/2004WR003133.

    Article  Google Scholar 

  • Schweizer, B. and Sklar, A., 1983, Probabilistic Metric Spaces, Elsevier Science Publishing Co., New York.

    Google Scholar 

  • Sen, Z., 1976, ‘Wet and dry periods of annual flows series’, Journal of Hydraulics Division ASCE 102(10), 1503–1514.

    Google Scholar 

  • Sen, Z., 1977, ‘Run-sums of annual flow series’, Journal of Hydrology 35, 311–324.

    Article  Google Scholar 

  • Sen, Z., 1980, ‘Statistical analysis of hydrologic critical droughts’, Journal of Hydraulics Division ASCE 106(1), 99–115.

    Google Scholar 

  • Shiau, J. T. and Shen, H. W., 2001, ‘Recurrence analysis of hydrologic droughts of differing severity’, Journal of Water Resources Planning and Management ASCE 127(1), 30–40.

    Article  Google Scholar 

  • Shiau, J. T., 2003, ‘Return period of bivariate distributed hydrological events’, Stochastic Environmental Research and Risk Assessment 17(1–2), 42–57.

    Google Scholar 

  • Singh, K. and Singh, V. P., 1991, ‘Derivation of bivariate probability density functions with exponential marginals’, Stochastic Hydrology and Hydraulics 5(1), 55–68.

    Article  Google Scholar 

  • Sklar, K., 1959, Fonctions de repartition à n Dimensions et Leura Marges, Publ. Inst. Stat. Univ. Paris, 8, 229–231.

  • Tsakiris, G. and Vangelis, H., 2004, ‘Towards a drought watch system based on spatial SPI’, Water Resources Management 18(1), 1–12.

    Article  Google Scholar 

  • Yevjevich, V., 1967, An Objective Approach to Definitions and Investigations of Continental Hydrologic Droughts, Hydrologic Paper No.23, Colorado State University, Fort Collins.

  • Yue, S., 1999, ‘Applying bivariate normal distribution to flood frequency analysis’, Water International 24(3), 248–254.

    Article  Google Scholar 

  • Yue, S., Ouarda, T. B. M. J., Bobáe, B., Legendre, P., and Bruneau, P., 1999, ‘The Gumbel mixed model for flood frequency analysis’, Journal of Hydrology 226, 88–100.

    Article  Google Scholar 

  • Yue, S., Ouarda, T. B. M. J., and Bobée, B., 2001, ‘A review of bivariate gamma distributions for hydrological application’, Journal of Hydrology 246, 1–18.

    Article  Google Scholar 

  • Zelenhastic, E. and Salvai, A., 1987, ‘A method of streamflow drought analysis’, Water Resources Research 23(1), 156–168.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. T. Shiau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiau, J.T. Fitting Drought Duration and Severity with Two-Dimensional Copulas. Water Resour Manage 20, 795–815 (2006). https://doi.org/10.1007/s11269-005-9008-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-005-9008-9

Keywords

Navigation