Skip to main content
Log in

Delineation of Source Protection Zones Using Statistical Methods

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Source protection zones are increasingly important for securing the long-term viability of drinking water derived from groundwater resources. These may be either time-related capture zones or catchments related to the activity of a pumping well or spring. The establishment of such zones is an indispensable measure for the proper assessment of groundwater resource vulnerability and reduction of risk, which may be induced by human activities. The delineation of these protection zones is usually performed with the aid of models, which are in turn based on site-specific information of the aquifer’s geometry, hydraulic parameters and boundary conditions. Owing to the imperfect knowledge of such information, predicting the location of these zones is inherently uncertain. It is possible to quantify this uncertainty in a statistical manner through the development of probability maps, which shows the probability that a particular surface location belongs to the aquifer’s capture zone (or catchment area). This publication aims at the investigation of the requirements for the establishment of probabilistic source protection zones, the practical use of stochastic methods in their delineation, and the use of data-assimilation for uncertainty reduction. It also provides a methodology for the implementation of these methods by modelling practitioners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bakr, M. I., 2000, ‘A Stochastic Inverse-Management Approach to Groundwater Quality Problems’, Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.

    Google Scholar 

  • Bakr, M. I. and Butler, A. P., 2004a, ‘Worth of head data in well capture zone design, deterministic and stochastic analysis’, J. Hydrol. 290(3–4), 202–216.

    Google Scholar 

  • Bakr, M. I. and Butler, A., 2004b, ‘Nonstationary stochastic analysis in well capture zone design using first-order Taylor’s series approximation’, Water Resour. Res. (submitted).

  • Bakr, M. I., te Stroet, C., and Meijerink, A., 2003, ‘Stochastic groundwater quality management; role of spatial variability and conditioning’, Water Resour. Res. 39, 2078, doi: 10.1029/2002WR001745.

    Google Scholar 

  • Ballio, F., and Guadagnini, A., 2004, ‘Convergence assessment of numerical Monte Carlo simulations in groundwater hydrology’, Water Resour. Res. 40, W04603, doi:10.1029/2003WR002876.

    Google Scholar 

  • Bear, J. and Jacobs, M., 1965, ‘On the movement of water bodies injected into aquifers’, J. Hydrol. 3, 37–57.

    Google Scholar 

  • Deutsch, C. V. and Journel, A. G., 1998, GSLIB: Geostatistical Software Library and User’s Guide, 2nd ed., Oxford University Press, New York.

    Google Scholar 

  • Evers, S. and Lerner, D. N., 1998, ‘How uncertain is our estimate of a wellhead protection zone?’, Ground Water 36, 49–57.

    CAS  Google Scholar 

  • Feyen, L., Beven, K. J., De Smedt, F., and Freer, J., 2001, ‘Stochastic capture zone delineation within the generalized likelihood uncertainty estimation methodology: Conditioning on head observations’, Water Resour. Res. 37, 625–638.

    Google Scholar 

  • Feyen, L., Ribeiro, P. J. Jr., Gómez-Hernández, J. J., Beven K. J., and De Smedt, F., 2003a, ‘Bayesian methodology for stochastic capture zone delineation incorporating transmissivity measurements and hydraulic head observations’, J. Hydrol. 271, 156–170.

    Google Scholar 

  • Feyen, L., Gómez-Hernández, J. J., Ribeiro Jr., P. J., Beven, K. J., and De Smedt, F., 2003b, ‘A Bayesian approach to stochastic capture zone delineation incorporating tracer arrival times, conductivity measurements and hydraulic head observations’, Water Resour. Res. 39, 1126, doi: 10.1029/2002WR001544.

    Google Scholar 

  • Franzetti, S. and Guadagnini, A., 1996, ‘Probabilistic estimation of well catchments in heterogeneous aquifers’, J. Hydrol. 174, 149–171.

    Google Scholar 

  • Gómez-Hernández, J. J. and Journel A. G., 1993, ‘Joint simulation of MultiGaussian random variables’, in A. Soares (ed.), Geostatistics Tróia ‘92, vol. 1, Kluwer Academic Publishers, pp. 85-94.

  • Gómez-Hernández, J. J., Sahuquillo, A., and Capilla, J. E., 1997, ‘Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data. 1. Theory’, J. Hydrol. 203, 162–174.

    Google Scholar 

  • Guadagnini, A. and Franzetti, S., 1999, ‘Time-related capture zones for contaminants in randomly heterogeneous formations’, Ground Water 37, 253–260.

    CAS  Google Scholar 

  • Guadagnini, A. Sànchez-Vila, X., Riva, M., and De Simoni, M., 2003, ‘Mean travel time of conservative solutes in randomly heterogeneous unbounded domains under mean uniform flow’, Water Resour. Res. 39, 1050, doi: 10.1029/2002WR001811.

    Google Scholar 

  • Hendricks Franssen, H. J. W. M., 2001, ‘Inverse Stochastic Modelling of Groundwater Flow and Mass Transport’, Ph. D. thesis, Technical University of Valencia.

  • Hendricks Franssen, H. J. W. M., Stauffer F., and Kinzelbach, W., 2002, ‘Impact of spatio-temporally variable recharge on the characterisation of well capture zones’, in K. Kovar and Z. Hrkal (eds.) ModelCARE 2002—Calibration and reliability in Groundwater Modelling: A Few Steps Closer to Reality, IAHS Publication, 227, pp. 470–477.

  • Hendricks Franssen, H. J. W. M., Gómez-Hernández, J.J. and Sahuquillo, A., 2003, ‘Coupled inverse modelling of groundwater flow and mass transport and the worth of concentration data’, J. Hydrol. 281, 281–295.

    Google Scholar 

  • Hendricks Franssen, H. J. W. M. and Stauffer, F., 2004, ‘Optimal design of measurement networks for groundwater flow predictions’, Adcances in Water Resour. (submitted).

  • Hendricks Franssen, H. J. W. M., Stauffer F., and Kinzelbach, W., 2004a, ‘Joint estimation of transmissivities and recharges—Application: Stochastic characterization of well capture zones’, J. Hydrol. 294, 87–102.

    Google Scholar 

  • Hendricks Franssen, H. J. W. M., Stauffer F., and Kinzelbach, W., 2004b, ‘Influence of uncertainty of mean transmissivity, transmissivity variogram and boundary conditions on estimation of well capture zones’, in Sanchez-Villa, X., Carrera, J., and Gómez-Hernández, J. J. (eds.), GeoEnv IV-Geostatistics for Environmental Applications, Kluwer Acad. Publ., pp. 223-234.

  • Hernandez, A. F., Neuman, S. P., Guadagnini, A., and Carrera, J., 2003, ‘Conditioning mean steady state flow on hydraulic head and conductivity through geostatistical inversion’, Stoch. Environ. Res. Risk Assessm. 17, 329–338.

    Google Scholar 

  • Hunt, R. J., Steuer, J. J., Mansor, M. T. C., and Bullen, T. D., 2001, ‘Delineating a recharge area for a spring using numerical modeling, Monte Carlo techniques, and geochemical Investigation’, Ground Water 39, 702–712.

    CAS  PubMed  Google Scholar 

  • Jacobson, E., Andricevic, R., and Morrice, J., 2002, ‘Probabilistic capture zone delineation based on an analytic solution’, Ground Water 40, 85–95.

    CAS  PubMed  Google Scholar 

  • Kinzelbach, W., Marburger, M. and Chiang, W.-H., 1992, ‘Determination of groundwater catchment areas in two and three spatial dimensions’, J. Hydrol. 134, 221–246.

    Google Scholar 

  • Kunstmann, H. and Kinzelbach, W., 2000, ‘Computation of stochastic wellhead protection zones by combining the first-order second-moment method and Kolmogorov backward equation analysis’, J. Hydrol. 237, 127–146.

    Google Scholar 

  • Lu, Z. and Zhang, D., 2003, ‘On stochastic study of well capture zones in bounded, randomly heterogeneous medi’, Water Resour. Res. 39, 1100, doi10.1029/2002WR001633.

    Google Scholar 

  • Marsily de, G., 1986, Quantitative Hydrogeology, Academic Press, Orlando, FL.

    Google Scholar 

  • Martac, E., Sack-Kühner, B. and Ptak, T., 2003a, ‘Multilevel—Multitracer Tests in Heterogeneous Porous Aquifers: A Method for Subsurface Investigation and Testing of Stochastic Models for the Delineation of Wellhead Protection Zones’, Proceedings of 8th International FZK/TNO Conference on Contaminated Soil, Gent, Belgium.

    Google Scholar 

  • Martac, E., Guadagnini, L., Riva, M. and Ptak,T., 2003b, ‘Multivariate Geostatistical Parameterization Approach for 3D Transient Stochastic Modeling of Wellhead Protection Zones in a Highly Heterogeneous Aquifer’, Proceeding of MODFLOW and MORE 2003 Understanding Through Modelling, Poeter et al., International Ground Water Modeling Center (IGWMC), Colorado School of Mines, pp. 686–690.

  • McDonald, M. G. and Harbaugh, A. W., 1988, ‘A Modular Three-Dimensional Finite-Difference Groundwater Flow Model’, Manual 83–875, U.S. Geological Survey.

  • Medina, A. and Carrera, J., 1996, ‘Coupled estimation of flow and solute transport parameters’, Water Resour. Res. 32, 3063–3076.

    CAS  Google Scholar 

  • Pebesma, E., 1999, ‘GSTAT User’s manual’, Technical Report, Department of Physical Geography, Utrecht University, Utrecht, The Netherlands.

    Google Scholar 

  • Pollock, D. W., 1994, ‘User’s guide for MODPATH/MODPATH-PLOT, Version 3: A Particle Tracking Post-Processing Package for MODFLOW, the U.S. Geological Survey Finite-Difference Ground-Water Flow Model’, Open-File Report, U.S. Geological Survey, pp. 94–464.

  • Renard, P. and de Marsily, G., 1997, ‘Calculating equivalent permeability: A review’, Adv. Water Resour. 20, 253–278.

    Google Scholar 

  • Riva, M., Sanchez-Vila, X., De Simoni, M., Guadagnini, A., and Willmann, M., 2004, ‘Effect of heterogeneity on aquifer reclamation time’, in Sanchez-Villa, X., Carrera, J., and Gómez-Hernández, J. J. (eds.), GeoEnv IV-Geostatistics for Environmental Applications, Kluwer Acad. Publ., pp. 259–270.

  • Robin, M. J., Gutjahr, A. L., Sudicky, E. A., and Wilson, J. L., 1993, ‘Cross-correlated random field generation with the direct Fourier transform method’, Water Resour. Res. 26, 2385–2397.

    Google Scholar 

  • Sack-Kühner, B. T., 1996 ‘Einrichtung des Naturmessfeldes “Lauswiesen Tuebingen”, Erkundung der hydraulischen Eigenschaften, Charakterisierung der Untergrundheterogenitaet und Vergleich der Ergebnisse unterschiedlicher Erkundungsverfahren’, Diploma Thesis, Fachbereich Geowissenschaften, Eberhard-Karls-University Tuebingen, Germany.

    Google Scholar 

  • Stauffer, F., Attinger, S., Zimmermann, S., and Kinzelbach, W., 2002, ‘Uncertainty estimation of well catchments in heterogeneous aquifers’, Water Resour. Res. 38: doi: 10.1029/2001WR000819.

  • Valstar, J. R., 2001, ‘Inverse Modeling of Groundwater Flow and Transport’, Ph.D. Thesis, Delft University of Technology, The Netherlands.

    Google Scholar 

  • Van de Wiel, N. P. A. J., Gehrels, J. C., te Stroet, C. B. M. and Valstar, J. R., 2002, ‘Optimally Reducing Uncertainty in Well Capture Ones using Hydraulic Head Data’, in K. Kovar, Z. Hrkal (eds.), ModelCARE 2002—Calibration and Reliability in Groundwater Modelling: A Few Steps Closer to Reality, {IAHS Publication}, 277, pp. 498–507.

  • Van de Wiel, N. P. A. J., Gehrels, J. C., te Stroet, C. B. M., and Valstar, J. R., 2004, ‘Conditioning stochastic well capture zones on optimised grids of head measurements’, J. Hydrol. (Submitted).

  • Van Leeuwen, M., 2000, ‘Stochastic determination of Well Capture Zones Conditioned on Transmissivity Data’, Ph.D. thesis, Imperial College of Science, Technology and Medicine, London.

    Google Scholar 

  • Van Leeuwen, M., Butler, A. P., te Stroet, C. B. M., and Tompkins, J. A., 1999, ‘Stochastic Determination of the Wierden (Netherlands) Capture Zones’, Ground Water 37, 8–17.

    CAS  Google Scholar 

  • Van Leeuwen, M., Butler, A. P., te Stroet, C. B. M., and Tompkins, J. A., 2000, ‘Stochastic determination of well capture zones conditioned on regular grids of transmissivity measurements’, Water Resour. Res. 36, 949–957.

    Google Scholar 

  • Wheater, H. S., Tompkins, J. A., van Leeuwen, M., and Butler A. P., 2000, ‘Uncertainty in groundwater flow and transport modelling — a stochastic analysis of well protection zones’, Hydrol. Processes 14, 2019–2029.

    Google Scholar 

  • Winter, C. L., Tartakovsky, D. M., and Guadagnini, A., 2003, ‘Moment differential equations for flow in highly heterogeneous porous media’, Surveys in Geophysics 24, 81–106.

    Google Scholar 

  • Ye, M., Neuman, S. P., Guadagnini, A., and Tartakovsky, D. M., 2004, ‘Nonlocal and localized analyses of conditional mean transient flow in bounded, randomly heterogeneous porous media’, Water Resour. Res. 40, W05104, doi: 10.1029/2003, WR002099.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Stauffer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stauffer, F., Guadagnini, A., Butler, A. et al. Delineation of Source Protection Zones Using Statistical Methods. Water Resour Manage 19, 163–185 (2005). https://doi.org/10.1007/s11269-005-3182-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-005-3182-7

Key words

Navigation