Water, Air, & Soil Pollution: Focus

, Volume 9, Issue 1–2, pp 117–127 | Cite as

A Geochemical Multi-Methodological Approach in Hazard Assessment of CO2-Rich Gas Emissions at Mt. Amiata Volcano (Tuscany, Central Italy)

  • F. TassiEmail author
  • O. Vaselli
  • F. Cuccoli
  • A. Buccianti
  • B. Nisi
  • E. Lognoli
  • G. Montegrossi


The present work aims to assess the hazard for human health related to CO2 anomalous concentrations in air emitted from dry gas vents located in the NE area of Mt. Amiata volcano (Tuscany, central Italy). A geochemical multi-methodological approach is adopted to determine the composition and the flux rate of the gas discharges in order to establish (1) the origin of the gas vents and (2) the behaviour of the discharged gases in the areas surrounding the emission sites. The gas vents are hosted within sub-circular morphological depressions (∅ ∼ 10–30 m), which likely originated by the collapse of cavities formed at shallow depth in the ground by dissolution of Triassic anhydrite formations and recent travertine deposits. CaCO3 and CaSO4 dissolution is mainly related to the underground circulation of CO2-rich fluids whose hydrological pattern is regulated by local and regional tectonics. The CO2-rich (up to 996,070 μmol/mol) gases tend to accumulate within the topographic lows, thus creating a sort of CO2 ponds, and the knowledge of their evolution in time and space is important to evaluate the related hazard. Consequently, a conceptual model of CO2 diffusion in air is developed to understand the dynamic of the CO2 accumulation/dispersion process based on (1) a 24-h continuous measurement of the CO2 flux from one of the main emission sites and (2) the recording of the main meteoric parameters, i.e. air temperature, wind direction and speed to check their influence. The results indicate that the threshold of CO2 concentrations considered dangerous for the human health is frequently overcome. Moreover, when meteoric conditions, i.e. low wind and cloudy weather, did not allow a rapid dispersion of the gas phase emitted from the dry vents, CO2-rich clouds periodically overflowed the morphological depressions for several tens of meters without any significant mixing with air. On the basis of these considerations, the monitoring of the output rate from the main gas emissions, combined with the continuous control of the local meteorological parameters, may be considered an efficient procedure to mitigate the CO2 hazard deriving from dry gas vents. An improvement of the protocol can be achieved in case of installations of CO2 sensors located in the most sensitive areas and connected to a telemetry system able to transmit the data in real time to the closest Civil Defence centre. The CO2 degassing sites can also represent a tourist attraction after the installation of suitable metallic fences and a proper campaign of information about these natural phenomena.


CO2 toxicity Gas emissions CO2 hazard Mt. Amiata volcano 



This work has financially been supported by the Regione Toscana (Resp. O. Vaselli). Many thanks are due to L. Capannesi, L. Lombardi, D. Rappuoli, S. Dapporto, S. Moretti and the Mayor of Castiglione d’Orcia for their support during the fieldwork and for providing useful information and comments throughout the whole study.


  1. Abbate, E., Bortolotti, V., Passerini, P., Sagri, M., & Sestini, G. (1970). Development of the northern Apennines geosynclines. Sedimentary Geology, 4, 207–642.CrossRefGoogle Scholar
  2. Aitchison, J., & Brown, J. A. C. (1957). The log-normal distribution p. 175. London: Cambridge University Press.Google Scholar
  3. Baubron, J. C., Rigo, A., & Toutain, J. P. (2002). Soil gas profiles as a tool to characterise active tectonic areas: the Jaut Pass example (Pyrenees, France). Earth and Planetary Science Letters, 196, 69–81.CrossRefGoogle Scholar
  4. Baxter, P. J. (1990). Medical effects of volcanic eruptions: 1. Main causes of death and injury. Bulletin of Volcanology, 52, 532–544.CrossRefGoogle Scholar
  5. Baxter, P. J., Baubron, J. C., & Coutinho, R. (1999). Health hazard and disaster potential of ground gas emissions at Furnas volcano, São Miguel, Azores. Journal of Volcanology and Geothermal Research, 92, 95–106.CrossRefGoogle Scholar
  6. Belotti, C., Cuccoli, F., Facheris, L., & Vaselli, O. (2003). An application of tomographic reconstruction of atmospheric CO2 over volcanic sites based on open-path laser measurements. IEEE Transactions on Geosciences and Remote Sensing, 41, 2629–2637.CrossRefGoogle Scholar
  7. Buonasorte, G., Pandeli, E., & Fiordelisi, A. (1991). The Alfina 15 well: deep geological data from northern Latium (Torre Alfina geothermal area). Bollettino della Societa Geologica Italiana, 110, 823–831.Google Scholar
  8. Calamai, A., Cataldi, R., Squarci, P., & Taffi, L. (1970). Geology, geophysics and hydrogeology of the Mt. Amiata geothermal field. Geothermics, 1, 1–9.Google Scholar
  9. Cardellini, C., Chiodini, G., Costa, A., Avino, R., Baldini, A., Caliro, S., et al. (2006). Gas hazard from natural CO2 emissions in central and southern Italy. Am. Geophys. Union Fall Meeting, Abstract 14A-05.Google Scholar
  10. Chiodini, G., Cioni, R., Guidi, M., Raco, B., & Marini, L. (1998). Soil CO2 flux measurements in volcanic and geothermal areas. Applied Geochemistry, 13, 543–552.CrossRefGoogle Scholar
  11. Chiodini, G., Frondini, F., Kerrick, D. M., Rogie, J., Parello, F., Peruzzi, L., et al. (1999). Quantification of deep CO2 fluxes from central Italy. Examples of carbon balance for regional aquifers and of soil diffuse degassing. Chemical Geology, 159, 205–222.CrossRefGoogle Scholar
  12. Chiodini, G., Frondini, F., Cardellini, C., Parello, F., & Peruzzi, L. (2000). Rate of diffuse carbon dioxide Earth degassing estimated from carbon balance of regional aquifers: the case of central Apennine, Italy. Journal of Geophysical Research, 105, 8423–8434.CrossRefGoogle Scholar
  13. Chiodini, G., Cardellini, C., Amato, A., Boschi, E., Caliro, S., Frondini, F., et al. (2004). Carbon dioxide Earth degassing and seismogenesis in central and southern Italy. Geophysical Research Letters, 31, L07615. doi: 10.1029/2004GL019480.CrossRefGoogle Scholar
  14. Ciotoli, G., Guerra, M., Lombardi, S., & Vittori, E. (1998). Soil survey for tracing seismogenic faults: a case-study the Fucino basin (central Italy). Journal of Geophysical Research, 103, 23781–23794.CrossRefGoogle Scholar
  15. Cuccoli, F., Facheris, L., Tanelli, S., & Giuli, D. (2000). Infrared tomographic system for monitoring the two-dimensional distribution of atmospheric pollution over limited areas. IEEE Transactions on Geosciences and Remote Sensing, 38, 1922–1935.CrossRefGoogle Scholar
  16. Della Vedova, B., Pellis, G., Foucher, J. P., & Rehault, J. P. (1984). Geothermal structure of Tyrrhenian Sea. Marine Geology, 55, 271–279.CrossRefGoogle Scholar
  17. Etiope, G. (1999). Subsoil CO2, CH4 and their advective transport from faulted grassland to the atmosphere. Journal of Geophysical Research, 104, 16889–16894.CrossRefGoogle Scholar
  18. Ferrari, L., Conticelli, S., Burlamacchi, L., & Manetti, P. (1996). Volcanological evolution of the Mt. Amiata, southern Tuscany: new geological and petrochemical data. Acta Vulcanologica, 8, 41–56.Google Scholar
  19. Gellhorn, E. (1936). The effect of O2-lack, variations in the CO2-content of the inspired air, and hyperpnea on visual intensity discrimination. American Journal of Physiology, 115, 679–684.Google Scholar
  20. Gerlach, T. (1991). Etna’s greenhouse pump. Nature, 351, 352–353.CrossRefGoogle Scholar
  21. Gerlach, T., Delgado, H., McGee, K., Doukas, M., Venegas, J., & Cardenas, L. (1997). Application of the LI-COR CO2 analyzer to volcanic plumes: a case study, volcan Popocatepetl, Mexico, June 7 and 10, 1995. Journal of Geophysical Research, 102, 8005–8019.CrossRefGoogle Scholar
  22. Gianelli, G., Puxeddu, M., Batini, F., Bertini, G., Dini, I., Pandeli, E., et al. (1988). Geological model of a young volcano-plutonic system: the geothermal region of Monte Amiata (Tuscany, Italy). Geothermics, 17, 719–734.CrossRefGoogle Scholar
  23. Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). PAST: paleontological statistical software package for education and data analysis. Palaeontologia Electronica, 4, 1–9.Google Scholar
  24. Hards, V. L. (2005). Volcanic contributions to the global Carbon cycle. British Geological Survey Occasional Publication, 10, 1–26.Google Scholar
  25. Hoefs, J. (1973). Stable isotope geochemistry p. 140. Berlin, Germany: Springer.Google Scholar
  26. Langelier, W. F., & Ludwig, H. F. (1942). Graphical method for indicating the mineral character of natural waters. Journal of the American Waterworks Association, 34, 335–352.Google Scholar
  27. Langford, N. J. (2005). Carbon dioxide poisoning. Toxicological Reviews, 24, 229–235.CrossRefGoogle Scholar
  28. Minissale, A. (2004). Origin, transport and discharge of CO2 in central Italy. Earth Science Reviews, 66, 89–141.CrossRefGoogle Scholar
  29. Minissale, A., & Duchi, V. (1988). Geothermometry of fluids circulating in a carbonate reservoir in north-central Italy. Journal of Volcanology and Geothermal Research, 35, 237–252.CrossRefGoogle Scholar
  30. Minissale, A., Evans, W., Magro, G., & Vaselli, O. (1997a). Multiple source components in gas manifestations from north-central Italy. Chemical Geology, 142, 175–192.CrossRefGoogle Scholar
  31. Minissale, A., Magro, G., Vaselli, O., Verrucchi, C., & Perticone, I. (1997b). Hydro-gas geochemistry of the Mt. Amiata silicic complex and surrounding areas (central Italy). Journal of Volcanology and Geothermal Research, 79, 223–251.CrossRefGoogle Scholar
  32. Montegrossi, G., Tassi, F., Vaselli, O., Buccianti, A., & Garofalo, K. (2001). Sulphur species in volcanic gases. Analytical Chemistry, 73, 3709–3715.CrossRefGoogle Scholar
  33. Ott, W. R. (1990). A physical explanation of the lognormality of pollutant concentrations. Journal of the Air and Waste Management Association, 40, 1378–1383.Google Scholar
  34. Parkinson, K. J. (1981). An improved method for measuring soil respiration in the field. Journal of Applied Ecology, 18, 221–228.CrossRefGoogle Scholar
  35. Raich, J. W., & Schlesinger, W. H. (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B, 81–99.Google Scholar
  36. Rogie, J. D., Kerrick, D. M., Chiodini, G., & Frondini, F. (2000). Flux measurement of nonvolcanic CO2 emission from some vents in central Italy. Journal of Geophysical Research, 105, 8435–8445.CrossRefGoogle Scholar
  37. Rollinson, H. (1992). Using geochemical data p. 352. London, UK: Longman.Google Scholar
  38. Sechzer, P. H., Egbert, L. D., Linde, H. W., Cooper, D. Y., Dripps, R. D., & Price, H. L. (1960). Effect of CO2 inhalation on arterial pressure, ECG and plasma catecholamines and 17-OH corticosteroids in normal man. Journal of Applied Physiology, 15, 454–458.Google Scholar
  39. Seinfeld, J. H. (1986). Atmospheric chemistry and physics of air pollution p. 786. New York: Wiley.Google Scholar
  40. Tassi, F., Montegrossi, G., Vaselli, O. (2004). Metodologie di campionamento ed analisi in fase gassosa. Internal Report CNR-IGG, Florence, pp.17 (in Italian).Google Scholar
  41. Tonani, F., Miele, G. (1991). Methods for measuring flow of carbon dioxide through soils in the volcanic setting. In International Conference on Active Volcanoes and Risk Mitigation, Napoli, Italy, 27 August–1 September.Google Scholar
  42. Toutain, J. P., & Baubron, J. C. (1999). Gas geochemistry and seismotectonics: a review. Tectonophysics, 304, 1–27.CrossRefGoogle Scholar
  43. Varekamp, J. C., Kreulen, R., Poorter, R. P. E., & Vanbergen, M. J. (1992). Carbon-sources in arc volcanism, with implications for the Carbon-cycle. Terra Nova, 4, 363–373.CrossRefGoogle Scholar
  44. Vaselli, O., Censi, P., Abbado, D. A., Minissale, A., Paolieri, M., Tassi, F. (1997). Regolamento operativo per le analisi dei rapporti isotopici 18O/16O e 13C/12C nei carbonati, 13C/12C nella CO2 dei gas e 18O/16O nelle acque. Internal Report CNR-CSMGA, Florence, pp. 14 (in Italian).Google Scholar
  45. Williams, S. N., Schaefer, S. J., Calvache, M. L., & Lopez, D. (1992). Global Carbon-dioxide emission to the atmosphere by volcanoes. Geochimica et Cosmochimica Acta, 56, 1765–1770.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • F. Tassi
    • 1
    Email author
  • O. Vaselli
    • 1
  • F. Cuccoli
    • 2
  • A. Buccianti
    • 1
  • B. Nisi
    • 1
  • E. Lognoli
    • 1
  • G. Montegrossi
    • 3
  1. 1.Department of Earth SciencesUniversity of FlorenceFlorenceItaly
  2. 2.Department of Electronics and TelecommunicationsU.O. CNITFlorenceItaly
  3. 3.CNR—IGG Institute of Geosciences and Earth ResourcesFlorenceItaly

Personalised recommendations