Skip to main content
Log in

A Geochemical Multi-Methodological Approach in Hazard Assessment of CO2-Rich Gas Emissions at Mt. Amiata Volcano (Tuscany, Central Italy)

  • Published:
Water, Air, & Soil Pollution: Focus

Abstract

The present work aims to assess the hazard for human health related to CO2 anomalous concentrations in air emitted from dry gas vents located in the NE area of Mt. Amiata volcano (Tuscany, central Italy). A geochemical multi-methodological approach is adopted to determine the composition and the flux rate of the gas discharges in order to establish (1) the origin of the gas vents and (2) the behaviour of the discharged gases in the areas surrounding the emission sites. The gas vents are hosted within sub-circular morphological depressions (∅ ∼ 10–30 m), which likely originated by the collapse of cavities formed at shallow depth in the ground by dissolution of Triassic anhydrite formations and recent travertine deposits. CaCO3 and CaSO4 dissolution is mainly related to the underground circulation of CO2-rich fluids whose hydrological pattern is regulated by local and regional tectonics. The CO2-rich (up to 996,070 μmol/mol) gases tend to accumulate within the topographic lows, thus creating a sort of CO2 ponds, and the knowledge of their evolution in time and space is important to evaluate the related hazard. Consequently, a conceptual model of CO2 diffusion in air is developed to understand the dynamic of the CO2 accumulation/dispersion process based on (1) a 24-h continuous measurement of the CO2 flux from one of the main emission sites and (2) the recording of the main meteoric parameters, i.e. air temperature, wind direction and speed to check their influence. The results indicate that the threshold of CO2 concentrations considered dangerous for the human health is frequently overcome. Moreover, when meteoric conditions, i.e. low wind and cloudy weather, did not allow a rapid dispersion of the gas phase emitted from the dry vents, CO2-rich clouds periodically overflowed the morphological depressions for several tens of meters without any significant mixing with air. On the basis of these considerations, the monitoring of the output rate from the main gas emissions, combined with the continuous control of the local meteorological parameters, may be considered an efficient procedure to mitigate the CO2 hazard deriving from dry gas vents. An improvement of the protocol can be achieved in case of installations of CO2 sensors located in the most sensitive areas and connected to a telemetry system able to transmit the data in real time to the closest Civil Defence centre. The CO2 degassing sites can also represent a tourist attraction after the installation of suitable metallic fences and a proper campaign of information about these natural phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abbate, E., Bortolotti, V., Passerini, P., Sagri, M., & Sestini, G. (1970). Development of the northern Apennines geosynclines. Sedimentary Geology, 4, 207–642.

    Article  Google Scholar 

  • Aitchison, J., & Brown, J. A. C. (1957). The log-normal distribution p. 175. London: Cambridge University Press.

    Google Scholar 

  • Baubron, J. C., Rigo, A., & Toutain, J. P. (2002). Soil gas profiles as a tool to characterise active tectonic areas: the Jaut Pass example (Pyrenees, France). Earth and Planetary Science Letters, 196, 69–81.

    Article  CAS  Google Scholar 

  • Baxter, P. J. (1990). Medical effects of volcanic eruptions: 1. Main causes of death and injury. Bulletin of Volcanology, 52, 532–544.

    Article  Google Scholar 

  • Baxter, P. J., Baubron, J. C., & Coutinho, R. (1999). Health hazard and disaster potential of ground gas emissions at Furnas volcano, São Miguel, Azores. Journal of Volcanology and Geothermal Research, 92, 95–106.

    Article  CAS  Google Scholar 

  • Belotti, C., Cuccoli, F., Facheris, L., & Vaselli, O. (2003). An application of tomographic reconstruction of atmospheric CO2 over volcanic sites based on open-path laser measurements. IEEE Transactions on Geosciences and Remote Sensing, 41, 2629–2637.

    Article  Google Scholar 

  • Buonasorte, G., Pandeli, E., & Fiordelisi, A. (1991). The Alfina 15 well: deep geological data from northern Latium (Torre Alfina geothermal area). Bollettino della Societa Geologica Italiana, 110, 823–831.

    Google Scholar 

  • Calamai, A., Cataldi, R., Squarci, P., & Taffi, L. (1970). Geology, geophysics and hydrogeology of the Mt. Amiata geothermal field. Geothermics, 1, 1–9.

    Google Scholar 

  • Cardellini, C., Chiodini, G., Costa, A., Avino, R., Baldini, A., Caliro, S., et al. (2006). Gas hazard from natural CO2 emissions in central and southern Italy. Am. Geophys. Union Fall Meeting, Abstract 14A-05.

  • Chiodini, G., Cioni, R., Guidi, M., Raco, B., & Marini, L. (1998). Soil CO2 flux measurements in volcanic and geothermal areas. Applied Geochemistry, 13, 543–552.

    Article  CAS  Google Scholar 

  • Chiodini, G., Frondini, F., Kerrick, D. M., Rogie, J., Parello, F., Peruzzi, L., et al. (1999). Quantification of deep CO2 fluxes from central Italy. Examples of carbon balance for regional aquifers and of soil diffuse degassing. Chemical Geology, 159, 205–222.

    Article  CAS  Google Scholar 

  • Chiodini, G., Frondini, F., Cardellini, C., Parello, F., & Peruzzi, L. (2000). Rate of diffuse carbon dioxide Earth degassing estimated from carbon balance of regional aquifers: the case of central Apennine, Italy. Journal of Geophysical Research, 105, 8423–8434.

    Article  CAS  Google Scholar 

  • Chiodini, G., Cardellini, C., Amato, A., Boschi, E., Caliro, S., Frondini, F., et al. (2004). Carbon dioxide Earth degassing and seismogenesis in central and southern Italy. Geophysical Research Letters, 31, L07615. doi:10.1029/2004GL019480.

    Article  Google Scholar 

  • Ciotoli, G., Guerra, M., Lombardi, S., & Vittori, E. (1998). Soil survey for tracing seismogenic faults: a case-study the Fucino basin (central Italy). Journal of Geophysical Research, 103, 23781–23794.

    Article  CAS  Google Scholar 

  • Cuccoli, F., Facheris, L., Tanelli, S., & Giuli, D. (2000). Infrared tomographic system for monitoring the two-dimensional distribution of atmospheric pollution over limited areas. IEEE Transactions on Geosciences and Remote Sensing, 38, 1922–1935.

    Article  Google Scholar 

  • Della Vedova, B., Pellis, G., Foucher, J. P., & Rehault, J. P. (1984). Geothermal structure of Tyrrhenian Sea. Marine Geology, 55, 271–279.

    Article  Google Scholar 

  • Etiope, G. (1999). Subsoil CO2, CH4 and their advective transport from faulted grassland to the atmosphere. Journal of Geophysical Research, 104, 16889–16894.

    Article  CAS  Google Scholar 

  • Ferrari, L., Conticelli, S., Burlamacchi, L., & Manetti, P. (1996). Volcanological evolution of the Mt. Amiata, southern Tuscany: new geological and petrochemical data. Acta Vulcanologica, 8, 41–56.

    Google Scholar 

  • Gellhorn, E. (1936). The effect of O2-lack, variations in the CO2-content of the inspired air, and hyperpnea on visual intensity discrimination. American Journal of Physiology, 115, 679–684.

    CAS  Google Scholar 

  • Gerlach, T. (1991). Etna’s greenhouse pump. Nature, 351, 352–353.

    Article  Google Scholar 

  • Gerlach, T., Delgado, H., McGee, K., Doukas, M., Venegas, J., & Cardenas, L. (1997). Application of the LI-COR CO2 analyzer to volcanic plumes: a case study, volcan Popocatepetl, Mexico, June 7 and 10, 1995. Journal of Geophysical Research, 102, 8005–8019.

    Article  CAS  Google Scholar 

  • Gianelli, G., Puxeddu, M., Batini, F., Bertini, G., Dini, I., Pandeli, E., et al. (1988). Geological model of a young volcano-plutonic system: the geothermal region of Monte Amiata (Tuscany, Italy). Geothermics, 17, 719–734.

    Article  CAS  Google Scholar 

  • Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). PAST: paleontological statistical software package for education and data analysis. Palaeontologia Electronica, 4, 1–9.

    Google Scholar 

  • Hards, V. L. (2005). Volcanic contributions to the global Carbon cycle. British Geological Survey Occasional Publication, 10, 1–26.

    Google Scholar 

  • Hoefs, J. (1973). Stable isotope geochemistry p. 140. Berlin, Germany: Springer.

    Google Scholar 

  • Langelier, W. F., & Ludwig, H. F. (1942). Graphical method for indicating the mineral character of natural waters. Journal of the American Waterworks Association, 34, 335–352.

    CAS  Google Scholar 

  • Langford, N. J. (2005). Carbon dioxide poisoning. Toxicological Reviews, 24, 229–235.

    Article  CAS  Google Scholar 

  • Minissale, A. (2004). Origin, transport and discharge of CO2 in central Italy. Earth Science Reviews, 66, 89–141.

    Article  CAS  Google Scholar 

  • Minissale, A., & Duchi, V. (1988). Geothermometry of fluids circulating in a carbonate reservoir in north-central Italy. Journal of Volcanology and Geothermal Research, 35, 237–252.

    Article  CAS  Google Scholar 

  • Minissale, A., Evans, W., Magro, G., & Vaselli, O. (1997a). Multiple source components in gas manifestations from north-central Italy. Chemical Geology, 142, 175–192.

    Article  CAS  Google Scholar 

  • Minissale, A., Magro, G., Vaselli, O., Verrucchi, C., & Perticone, I. (1997b). Hydro-gas geochemistry of the Mt. Amiata silicic complex and surrounding areas (central Italy). Journal of Volcanology and Geothermal Research, 79, 223–251.

    Article  CAS  Google Scholar 

  • Montegrossi, G., Tassi, F., Vaselli, O., Buccianti, A., & Garofalo, K. (2001). Sulphur species in volcanic gases. Analytical Chemistry, 73, 3709–3715.

    Article  CAS  Google Scholar 

  • Ott, W. R. (1990). A physical explanation of the lognormality of pollutant concentrations. Journal of the Air and Waste Management Association, 40, 1378–1383.

    CAS  Google Scholar 

  • Parkinson, K. J. (1981). An improved method for measuring soil respiration in the field. Journal of Applied Ecology, 18, 221–228.

    Article  Google Scholar 

  • Raich, J. W., & Schlesinger, W. H. (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B, 81–99.

    CAS  Google Scholar 

  • Rogie, J. D., Kerrick, D. M., Chiodini, G., & Frondini, F. (2000). Flux measurement of nonvolcanic CO2 emission from some vents in central Italy. Journal of Geophysical Research, 105, 8435–8445.

    Article  CAS  Google Scholar 

  • Rollinson, H. (1992). Using geochemical data p. 352. London, UK: Longman.

    Google Scholar 

  • Sechzer, P. H., Egbert, L. D., Linde, H. W., Cooper, D. Y., Dripps, R. D., & Price, H. L. (1960). Effect of CO2 inhalation on arterial pressure, ECG and plasma catecholamines and 17-OH corticosteroids in normal man. Journal of Applied Physiology, 15, 454–458.

    CAS  Google Scholar 

  • Seinfeld, J. H. (1986). Atmospheric chemistry and physics of air pollution p. 786. New York: Wiley.

    Google Scholar 

  • Tassi, F., Montegrossi, G., Vaselli, O. (2004). Metodologie di campionamento ed analisi in fase gassosa. Internal Report CNR-IGG, Florence, pp.17 (in Italian).

  • Tonani, F., Miele, G. (1991). Methods for measuring flow of carbon dioxide through soils in the volcanic setting. In International Conference on Active Volcanoes and Risk Mitigation, Napoli, Italy, 27 August–1 September.

  • Toutain, J. P., & Baubron, J. C. (1999). Gas geochemistry and seismotectonics: a review. Tectonophysics, 304, 1–27.

    Article  CAS  Google Scholar 

  • Varekamp, J. C., Kreulen, R., Poorter, R. P. E., & Vanbergen, M. J. (1992). Carbon-sources in arc volcanism, with implications for the Carbon-cycle. Terra Nova, 4, 363–373.

    Article  Google Scholar 

  • Vaselli, O., Censi, P., Abbado, D. A., Minissale, A., Paolieri, M., Tassi, F. (1997). Regolamento operativo per le analisi dei rapporti isotopici 18O/16O e 13C/12C nei carbonati, 13C/12C nella CO2 dei gas e 18O/16O nelle acque. Internal Report CNR-CSMGA, Florence, pp. 14 (in Italian).

  • Williams, S. N., Schaefer, S. J., Calvache, M. L., & Lopez, D. (1992). Global Carbon-dioxide emission to the atmosphere by volcanoes. Geochimica et Cosmochimica Acta, 56, 1765–1770.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has financially been supported by the Regione Toscana (Resp. O. Vaselli). Many thanks are due to L. Capannesi, L. Lombardi, D. Rappuoli, S. Dapporto, S. Moretti and the Mayor of Castiglione d’Orcia for their support during the fieldwork and for providing useful information and comments throughout the whole study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Tassi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tassi, F., Vaselli, O., Cuccoli, F. et al. A Geochemical Multi-Methodological Approach in Hazard Assessment of CO2-Rich Gas Emissions at Mt. Amiata Volcano (Tuscany, Central Italy). Water Air Soil Pollut: Focus 9, 117–127 (2009). https://doi.org/10.1007/s11267-008-9198-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11267-008-9198-2

Keywords

Navigation