Skip to main content
Log in

Modelling the Environmental Fate of the Herbicide Glyphosate in Soil Lysimeters

  • Published:
Water, Air, & Soil Pollution: Focus

Abstract

In a risk assessment study the environmental fate of the herbicide glyphosate was studied with the specific background of the presence of genetically modified (GM) plants. Aim was to simulate the environmental behaviour of glyphosate in sandy field soil lysimeters after multiple herbicide applications and under the presence of GM soybean and to test and enhance model reliability in the simulation of the herbicide fate including biodegradation in the soil and herbicide translocation in GM plants. The modelling of the herbicide behaviour in the present study was based on the pesticide transport model LEACHP and the model PLANTX to simulate the pesticide uptake by plants. Both models were implemented in the modular modelling system EXPERT-N. Glyphosate transport measurements and the mathematical modelling results indicate that due to the high sorption of glyphosate to the soil matrix and the high microbial capacities for glyphosate degradation in the lysimeter soil, leaching risk can be considered to be low. We confirmed that the introduction of more adequate conceptual descriptions of microbial response to pesticide and nutrient additions can contribute to a reduction in the uncertainty of pesticide degradation modelling. Moreover, the consideration of uncertainty in sorption, dispersivity and degradation parameters revealed a considerable variability in model output. The observed accumulation of glyphosate in roots and nodules was reproduced by the simulation results. Under the restriction that the prevailing model assumptions are valid, the simulation results indicate that glyphosate may accumulate also in beans of trangenic soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bause, M., & Merz, W. (2005). Higher order regularity and approximation of solutions to the Monod biodegradation model. Applied Numerical Mathematics, 55, 154–172.

    Article  Google Scholar 

  • Benbrook, C. (2001). Northwest Science and Environmental Policy Center at Sandpoint (Idaho, USA), http://www.mindfully.org/Pesticide/More-GMOs-Less-Pesticide.htm.

  • Beulke, S., Brown, C. D., Dubus, I. G., Fryer, C. J., & Walker, A. (2004). Evaluation of probabilistic modelling approaches against data on leaching of isoproturon through undisturbed lysimeters. Ecological Modelling, 179, 131–144.

    Article  CAS  Google Scholar 

  • Blagodatsky, S. A., & Richter, O. (1998). Microbial growth in soil and nitrogen turnover: a theoretical model considering the activity state of microorganisms. Soil Biology & Biochemistry, 30, 1743–1755.

    Article  CAS  Google Scholar 

  • Bosma, T. N. P., Middeldorp, P. J. M., Schraa, G., & Zehnder, A. J. B. (1997). Mass transfer limitation of biotransformation: Quantifying bioavailability. Environmental Science & Technology, 31, 248–252.

    Article  CAS  Google Scholar 

  • Bruno, H., & Schaper, S. (2002). Review report glyphosate: Legal regulations of the European Union for plant protection products and their active substances. Volume D 26, Federal Biological Research Centre for Agriculture and Forestry Braunschweig.

  • Chiou, C. T., Sheng, G., & Manes, M. (2001). A partition-limited model for the plant uptake of organic contaminants from soil and water. Environmental Science & Technology, 35, 1437–1444.

    Article  CAS  Google Scholar 

  • de Jonge, H., de Jonge, L. W., & Jacobsen, O. H. (2000). [14C]Glyphosate transport in undisturbed topsoil columns. Pesticide Management Science, 56, 909–915.

    Article  Google Scholar 

  • Di, H. J., & Aylmore, L. A. G. (1997). Modeling the probabilities of groundwater contamination by pesticides. Soil Science Society of America Journal, 61, 17–23.

    Article  CAS  Google Scholar 

  • Dubus, I. G., Brown, C. D., & Beulke, S. (2003). Sources of uncertainty in pesticide fate modelling. The Science of the Total Environment, 317, 53–72.

    Article  CAS  Google Scholar 

  • Duke, S. O. (1988). Glyphosate. In Herbicides: Chemistry, degradation, and mode of action (pp. 1–70). New York: Marcel Dekker.

    Google Scholar 

  • Duke, S. O., Rimando, A. M., Pace, P. F., Reddy, K. N., & Smeda, R. J. (2003). Isoflavone, glyphosate, and aminomethylphosphonic acid levels in seeds of glyphosate-treated, glyphosate-resistant soybean. Journal of Agricultural Food Chemistry, 51, 340–344.

    Article  CAS  Google Scholar 

  • Forlani, G., Mangiagalli, A., Nielsen, E., & Suardi, C. M. (1999). Degradation of the phosphonate herbicide glyphosate in soil: evidence for a possible involvement of unculturable microorganism. Soil Biology & Biochemistry, 31, 991–997.

    Article  CAS  Google Scholar 

  • Franz, J. E., Mao, M. K., & Sikorski, J. A. (1997). Glyphosate: A unique global herbicide. Washington DC: American Chemical Society.

    Google Scholar 

  • Gärdenäs, A. I., Šimůnek, J., Jarvis, N., & van Genuchten, M. T. (2006). Two-dimensional modelling of preferential water flow and pesticide transport from a tile-drained field. Journal of Hydrology, 329, 647–660.

    Article  Google Scholar 

  • Geiger, D. R., Shieh, W. -J., & Fuchs, M. A. (1999). Causes of self-limited translocation of glyphosate in beta vulgaris plants. Pesticide Biochemistry and Physiology, 64, 124–133.

    Article  CAS  Google Scholar 

  • Gerke, H. H., & van Genuchten, M. T. (1996). Macroscopic representation of structural geometry for simulating water and solute movement in dual-porosity media. Advances in Water Resources, 19, 343–357.

    Article  Google Scholar 

  • Grundmann, S., Dörfler, U., Ruth, B. Loos, C., Wagner, T., Karl, H., et al. (2007). Mineralization and transfer processes of 14C-labelled pesticides in outdoor lysimeters. Water, Air, & Soil Pollution (this issue).

  • Guo, L., Jury, W. A., Wagenet, R. J., & Flury, M. (2000). Dependence of pesticide degradation on sorption: nonequilibrium model and application to soil reactors. Journal of Contaminant Hydrology, 43, 45–62.

    Article  CAS  Google Scholar 

  • Hutson, J. L., & Wagenet, R. J. (1992). LEACHM: Leaching estimation and chemistry model. (Ithaca USA: Department of Soil, Crop and Atmospheric Sciences, Research Series No. 92–93).

  • James, C. (2005). Global status of commercialized biotech/GM crops: 2005. ISAAA International Service for the Acquisition of Agri-Biotech Applications, ISAAA Briefs, 34, 1–11.

    Google Scholar 

  • Janssen, P. H. M., Heuberger, P. S. C., & Sanders, R. (1994). UNCSAM: A tool for automating sensitivity and uncertainty analysis. Environmental Software, 9, 1–11.

    Article  Google Scholar 

  • Johnsson, H., Bergström, L., Jansson, P. E., & Paustian, K. (1987). Simulated nitrogen dynamics and losses in a layered agricultural soil. Agriculture, Ecosystems & Environment, 18, 333–356.

    Article  Google Scholar 

  • Jury, W. A., Focht, D. D., & Farmer, W. J. (1987). Evaluation of pesticide groundwater pollution potential from standard indices of soil-chemical adsorption and biodegradation. Journal of Environmental Quality, 16, 422–428.

    Article  CAS  Google Scholar 

  • Klier, C. (2007). Environmental fate of the herbicide glyphosate in the soil–plant system: Monitoring and modelling using large-scale weighing lysimeters. PhD Thesis, Technical University Munich.

  • Köhne, J. M., Köhne, S., & Šimůnek, J. (2006). Multi-process herbicide transport in structured soil columns: Experiments and model analysis. Journal of Hydrology, 85, 1–32.

    Google Scholar 

  • Kühn, S. (2004) Bedeutung der Leistung mikrobieller Lebensgemeinschaften beim Umsatz und Abbau von Isoproturon in Böden und Möglichkeiten zur Steuerung des in-situ-Pestizidabbaus, Dissertation Technische Universität München.

  • Larsson, M. H., & Jarvis, N. J. (1999). Evaluation of a dual-porosity model to predict field-scale solute transport in a macroporous soil. Journal of Hydrology, 215, 153–171.

    Article  CAS  Google Scholar 

  • Loos, C., Gayler, S., & Priesack, E. (2007). Assessment of water balance simulations for large-scale weighing lysimeters. Journal of Hydrology, 335, 259–270.

    Article  Google Scholar 

  • Lorraine-Colwill, D. F., Powles, S. B., Hawkes, T. R., Hollinshead, P. H., Warner, S. A. J., & Preston, C. (2003). Investigations into the mechanism of glyphosate resistance in Lolium rigidum. Pesticide Biochemistry and Physiology, 74, 62–72.

    Article  Google Scholar 

  • Penning de Vries, F. W. T., Jansen, D. M., ten Berge, H. F. M., & Bakema, A., (1989). Simulation of ecophysiological processes of growth in several annual crops. (Wageningen, the Netherlands: Centre for Agricultural Publishing and Documentation).

  • Pline, W. A., Wu, J., & Hatzios, K. K. (1999). Effects of temperature and chemical additives on the response of transgenic herbicide-resistant soybeans to glufosinate and glyphosate applications. Pesticide Biochemistry and Physiology, 65, 119–131.

    Article  CAS  Google Scholar 

  • Priesack, E. (2006). Expert-N: Dokumentation der Modell Bibliothek. München: Hieronymus.

    Google Scholar 

  • Priesack, E., & Kisser-Priesack, G. M. (1993). Modelling diffusion and microbial uptake of 13C-glucose in soil aggregates. Geoderma, 56, 561–573.

    Article  CAS  Google Scholar 

  • Ray, C., Vogel, T., & Dusek, J. (2004). Modeling depth-variant and domain-specific sorption and biodegradation in dual-permeability media. Journal of Contaminant Hydrology, 70, 63–87.

    Article  CAS  Google Scholar 

  • Raymer, P. L., & Grey, T. L. (2003). Challenges in comparing transgenic and nontransgenic soybean cultivars. Crop Science, 43, 1584–1589.

    Article  Google Scholar 

  • Richter, O., Diekkrüger, B., & Nörtersheuser, P. (1996). Environmental fate modelling of pesticides. Weinheim: VCH Verlagsgesellschaft mbH.

    Google Scholar 

  • Rueppel, M. L., Brightwell, B. B., Schaefer, J., & Marvel, J. T. (1977). Metabolism and degradation of glyphosate in soil and water. Journal of Agricultural and Food Chemistry, 25, 517–528.

    Article  CAS  Google Scholar 

  • Ruser, R., Flessa, H., Russow, R., Schmidt, G., Buegger, F., & Munch, J. C. (2006). Emission of N2O, N2 and CO2 from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting. Soil Biology & Biochemistry, 38, 263–274.

    CAS  Google Scholar 

  • Ruth, B., & Munch, J. C. (2005). Field measurements of the water content in the top soil using a new capacitance sensor with a flat sensitive volume. Journal of Plant Nutrition and Soil Science, 168, 169–175.

    Article  CAS  Google Scholar 

  • Satchivi, N. M., Stoller, E. W., Wax, L. M., & Briskin, D. P. (2000). A nonlinear dynamic simulation model for xenobiotic transport and whole plant allocation following foliar application I. Conceptional foundation for model development. Pesticide Biochemistry and Physiology, 68, 67–84.

    Article  CAS  Google Scholar 

  • Schönherr, J. (2002). A mechanistic analysis of penetration of glyphosate salts across astomatous cuticular membranes. Pest Management Science, 58, 343–351.

    Article  CAS  Google Scholar 

  • Schroll, R., Brahushi, F., Dörfler, U., Kühn, S., Fekete, J., & Munch, J. C. (2004). Biomineralisation of 1,2,4-trichlorobenzene in soils by an adapted microbial population. Environmental Pollution, 127, 395–401.

    Article  CAS  Google Scholar 

  • Schroll, R., & Kühn, S. (2004). Test system to establish mass balances for 14C-labeled substances in soil–plant–atmosphere systems under field conditions. Environmental Science & Technology, 38, 1537–1544.

    Article  CAS  Google Scholar 

  • Schulla, J., & Jasper, K. (2000). Model Description WaSiM-ETH. Zürich: Institute for Climate Research, ETH.

  • Severinsen, M., & Jager, T. (1998). Modelling the influence of terrestrial vegetation on the environmental fate of xenobiotics. Chemosphere, 37, 41–62.

    Article  CAS  Google Scholar 

  • Simkins, S., & Alexander, M. (1984). Models for mineralization kinetics with the variables of substrate concentration and population density. Applied and Environmental Microbiology, 47, 1299–1306.

    CAS  Google Scholar 

  • Sims, D. A., Seemann, J. R., & Luo, Y. (1998). Elevated CO2 concentration has independent effects on expansion rates and thickness of soybean leaves across light and nitrogen gradients. Journal of Experimental Botany, 49, 583–591.

    Article  CAS  Google Scholar 

  • Simunek, J., Huang, K., & van Genuchten, M. T. (1998). The HYDRUS code for simulating the one-dimensional movement of water, heat and multiple solutes in variably-saturated media. Version 6.0. Riverside USA: U.S. Salinity Laboratory.

  • Sommers, L. E., Gilmour, C. M., Wildung, R. E., & Beck, S. M. (1978). The effect of water potential on decomposition processes in soils. In: Parr, J. F., Gardner, W. R., & Elliott L. F. (Eds.), (97–117). Proceedings: Water Potential Relations in Soil Microbiology, Soil Science Society of America.

  • Sparling, G. P. (1981). Microcalorimetry and other methods to assess biomass and activity in soil. Soil Biology & Biochemistry, 13, 93–98.

    Article  CAS  Google Scholar 

  • Sparling, G. P. (1983). Estimation of microbial biomass and activity in soil using microcalorimetry. European Journal of Soil Science, 34, 381–390.

    Article  CAS  Google Scholar 

  • Stenrød, M., Charnay, M. -P., Benoit, P., & Eklo, O. M. (2006). Spatial variability of glyphosate mineralization and soil microbial characteristics in two Norwegian sandy loam soils as affected by surface topographical features. Soil Biology & Biochemistry, 38, 962–971.

    Article  CAS  Google Scholar 

  • Sung, K., Kim, J., Munster, C. L., Corapcioglu, M. Y., Park, S., Drew, M. C., & Chang, Y. Y. (2006). A simple approach to modeling microbial biomass in the rhizosphere. Ecological Modelling, 190, 277–286.

    Article  CAS  Google Scholar 

  • Thomasson, M. J., & Wierenga, P. J. (2003). Spatial variability of the effective retardation factor in an unsaturated field soil. Journal of Hydrology, 272, 213–225.

    Article  Google Scholar 

  • Trapp, S. (1992) Modellierung der Aufnahme anthropogener organischer Chemikalien in Pflanzen, Dissertation Technische Universität München.

  • Trapp, S., & Matthies, M. (1996). Dynamik von Schadstoffen – Umweltmodellierung mit Chemos. Berlin Heidelberg: Springer-Verlag.

    Google Scholar 

  • van Laar, H. H., Goudriaan, J., & van Keulen, H. (1997). SUCROS97: Simulation of crop growth for potential and water-limited production situations quantitative approaches in system analysis, 14. C.T. de Wit Graduate School for Production Ecology and Resource Conservation, Wageningen, the Netherlands.

  • Vereecken, H. (2005). Mobility and leaching of glyphosate: A review. Pesticide Management Science, 61, 1139–1151.

    Article  CAS  Google Scholar 

  • Vereecken, H., Maes, J., & Feyen, J. (1990). Estimating unsaturated hydraulic conductivity from easily measured soil properties. Soil Science, 149, 1–11.

    Article  Google Scholar 

  • von Götz, N., & Richter, O. (1999). Simulation of herbicide degradation in different soils by use of pedo-transfer functions (PTF) and non-linear kinetics. Chemosphere, 38, 1401–1407.

    Article  Google Scholar 

  • von Wiren-Lehr, S., Komoßa, D., Gläßgen, W. E., Sandermann, H., & Scheunert, I. (1997). Mineralization of [14C]glyphosate and its plant-associated residues in arable soils originating from different farming systems. Pesticide Science, 51, 436–442.

    Article  Google Scholar 

  • Wauchope, R. D., Yeh, S., Linders, J. B. H. J., Kloskowski, R., Tanaka, K., Rubin, B., et al. (2002). Review – Pesticide soil sorption parameters: theory, measurement, uses, limitations and reliability. Pesticide Management Science, 58, 419–445.

    Article  CAS  Google Scholar 

  • Willems, H. P. L., Lewis, K. J., Dyson, J. S., & Lewis, F. J. (1996). Mineralization of 2,4-D and atrazine in the unsaturated zone of a sandy loam soil. Soil Biology & Biochemistry, 28, 989–996.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

For technical and experimental support with the tracer measurement we thank W. Stichler. The authors are grateful to Monsanto Europe for providing the transgenic soybean seeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Klier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klier, C., Grundmann, S., Gayler, S. et al. Modelling the Environmental Fate of the Herbicide Glyphosate in Soil Lysimeters. Water Air Soil Pollut: Focus 8, 187–207 (2008). https://doi.org/10.1007/s11267-007-9171-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11267-007-9171-5

Keywords

Navigation