Skip to main content
Log in

Speciation and Seasonal Variations of Dissolved Inorganic Arsenic in Jiaozhou Bay, North China

  • Published:
Water, Air, & Soil Pollution: Focus

Abstract

The distributions and biogeochemical cycles of arsenic in the aquatic environment have captured the interest of geochemists due to arsenic’s multiple chemical forms, the toxicity of certain arsenic species and large anthropogenic input. Seasonal variations in the dissolved inorganic arsenic concentration and speciation in Jiaozhou Bay, which is located on the west coast of the Yellow Sea in northern China, are presented here. Three cruises were carried out in Jiaozhou Bay under varying tidal regimes, one at neap tide and one at spring tide in August and one at spring tide in October of 2001. In addition to the transect surveys, the main sources of dissolved inorganic arsenate and arsenite in Jiaozhou Bay, including riverine input from five major tributary rivers, atmospheric dry and wet depositions, and groundwater and wastewater input, were collected in different seasons to estimate arsenic transport through different sources. The mean concentrations of total dissolved inorganic arsenic (TDIAs, As (V+III)) in Jiaozhou Bay were statistically comparable between summer and autumn, with higher concentrations at the northwest and northeast parts of the bay, reflecting human activities. The As (III)/TDIAs ratio ranged between 0.045 and 0.68, with an average of 0.16, implying that arsenate was the dominating species in Jiaozhou Bay. A preliminary box model was established to estimate the water-mass balance and arsenic budgets for Jiaozhou Bay, which demonstrated that river inputs and atmospheric depositions were the main sources of arsenic into Jiaozhou Bay. The concentrations of dissolved inorganic arsenic in Jiaozhou Bay have decreased in the last two decades. Compared with other areas in the world, the concentration of arsenic in Jiaozhou Bay remains at the natural level and this region can be characterized as a less disturbed area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmeda, K. M., Bhattacharya, P., Hasan, M. A., Akhter, S. H., Alam, S. M. M., Bhuyian, M. A. H., et al. (2004). Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: An overview. Applied Geochemistry, 19, 181–200.

    Article  CAS  Google Scholar 

  • Amirbahman, A., Kent D. B., Curtis G. P., & Davis J. A. (2006). Kinetics of sorption and abiotic oxidation of arsenic (III) by aquifer materials. Geochimica. Cosmochimica Acta, 70, 533–547.

    Article  CAS  Google Scholar 

  • Andreae, M. O. (1979). Arsenic speciation in seawater and interstitial waters: The influence of biological-chemical interactions on the chemistry of a trace element. Limnology and Oceanography, 24, 440–452.

    Article  CAS  Google Scholar 

  • Bhattacharya, P., Jacks, G., Ahmed, K. M., Khan, A. A., & Routh, J. (2002). Arsenic in groundwater of the Bengal Delta Plain aquifers in Bangladesh. Bulletin of Environmental Contamination and Toxicology, 69, 538–545.

    Article  CAS  Google Scholar 

  • Cai, Y., Cabrera, J. C., Georgiadis, M. & Jayachandran, K. (2002). Assessment of arsenic mobility in the soils of some golf courses in South Florida. Science of Total Environment, 291, 123–134.

    Article  CAS  Google Scholar 

  • Carbonell-Barrachina, A., Jugsjinda, A., DeLaune, R. D., Jr. Patrick, W. H., Burló, F., Sirisukhodom S., et al. (1999). The influence of redox chemistry and pH on chemical active forms of arsenic in sewage sludge-amended soil. Environmental International, 25, 613–618.

    Article  CAS  Google Scholar 

  • Chaillou, G., Schäfer, J., Anschutz, P., Lavaux, G., & Blanc, G. (2003). The behaviour of arsenic in muddy sediments of the bay of Biscay (France). Geochimica Cosmochimica Acta, 67, 2993–3003.

    Article  CAS  Google Scholar 

  • Cheng, Y., Ren, J. L., Li, D. D., Liu, S. M., & Zhang, J. (2006). Distribution of arsenic and its seasonal variations in the coastal area adjacent to the Changjiang Estuary. Journal of Ocean University, 5(3), 243–250.

    Article  CAS  Google Scholar 

  • Cullen, W. R., & Reimer, K. J., (1989). Arsenic speciation in the environment. Chemistry Review, 89, 713–764.

    Article  CAS  Google Scholar 

  • Cutter, G. A., & Cutter, L. S. (1995). Behavior of dissolved antimony, arsenic, and selenium in the Atlantic Ocean. Marine Chemistry, 49, 295–306.

    Article  CAS  Google Scholar 

  • Cutter, G. A., & Cutter, L. S. (1998). Metalloids in the high latitude North Atlantic Ocean: Sources and internal cycling. Marine Chemistry, 61, 25–36.

    Article  CAS  Google Scholar 

  • Cutter, G. A., Cutter, L. S., Featherstone A. M., & Lohrenz S. E. (2001). Antimony and arsenic biogeochemistry in the western Atlantic Ocean. Deep-Sea Research II, 48, 2895–2915.

    Article  CAS  Google Scholar 

  • Cutter, G. A., & Measures, C. I. (1999). The 1999 IOC contaminant baseline survey in the Atlantic Ocean from 33°S to 10°N: Introduction, sampling protocols and hydrographic data. Deep-Sea Research II, 46, 867–884.

    Article  CAS  Google Scholar 

  • Dai, T. X., Su, C. B., Zhou, C. Z., & Wei, S. P. (2004). Analysis and revelation of rainfall variation during last 100 years in Shandong Province, China. Fang Xun Kang Han, 6, 9–10 (in Chinese).

    Google Scholar 

  • Duce, R. A., Liss, P. S., Merrill, J. T., Atlas, E. L., Buat-Menard, P., Hicks, B. B., et al. (1991) The atmospheric input of trace species to the world ocean. Global Biogeochemical Cycles, 5, 193–259.

    Article  CAS  Google Scholar 

  • Editorial Board of Annals of Bays in China (1993). Annals of Bays in China, 4. Beijing: Ocean Press, (pp. 448) (in Chinese).

  • Elbaz-Poulichet, F., Huang, W. W., Martin, J. M., Seyler, P., Zhong, X. M., & Zhu, J. X. (1990). Behavior of dissolved trace elements in the Changjiang Estuary. In G. H. Yu, J. M. Martin & J. Y. Zhou (Eds.), Biogeochemical Study of the Changjiang Estuary (pp. 293–311). Beijing: China Ocean Press.

    Google Scholar 

  • Ellwood, M. J., & Maher, W. A. (2002). Arsenic and antimony species in surface transects and depth profiles across a frontal zone: The Chatham Rise, New Zealand. Deep-Sea Research I, 49, 1971–1981.

    Article  CAS  Google Scholar 

  • Fan, Z. J., & Zhou, Y. Y. (1999). Development and Prospective of Marine Environmental Protection Science and Technology in China. (pp. 248). Beijing: Ocean Press (in Chinese).

    Google Scholar 

  • Gordon, D. C., Boudreau, P. R., Mann, K. H., Ong, J.–E., Silvert, W. L., Smith, S. V., et al. (1996). LOICZ Biogeocchemical Modelling Guidelines. LOICZ Reports and Studies 5, LOICZ, Texel, The Netherlands.

  • Han, Y. M., Du, P. X., Cao, J. J., & Posmentier, E. S. (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Science of the Total Environment, 355, 176–186.

    Article  CAS  Google Scholar 

  • Kim, M. J., & Nriagu, J. (2000). Oxidation of arsenic in groundwater using ozone and oxygen. Science of Total Environment, 247, 71–79.

    Article  CAS  Google Scholar 

  • Li, D. (1988). Preliminary study on the policy of environmental pollution and prevention in Jiaozhou Bay. Marine Environmental Science, 7(2), 44–45 (in Chinese).

    Google Scholar 

  • Li, D. D. (2003) Modification of atomic fluorescence determination of arsenic in natural waters, with application in Jiaozhou Bay, the Yellow Sea and the East China Sea. Master’s dissertation, Ocean University of China (in Chinese, with English abstract).

  • Li Q. S., Shen W. R., & Ma X. N. (1984). Research of arsenic in the Bohai Bay. Journal of Shandong College of Oceanology, 14, 27–39 (in Chinese, with English abstract).

    CAS  Google Scholar 

  • Li J., Zhang M. X., Xu C., Hao C. L., Zhou J. Y., & Qian W. Y. (1981). Marine environmental geochemistry III: Speciation of arsenic in the surface seawater of Jiaozhou Bay. Journal of Shandong College of Oceanology, 11(2), 32–37 (in Chinese).

    CAS  Google Scholar 

  • Li, J., Zhen, G. P., Yang, Y. P., & Hu, M. H. (2002). Variation characteristics of dissolved inorganic arsenic from surface seawater in Xiamen Harbor during the typhoon ‘Bilis’. Journal of Oceanography in Taiwan Strait, 21, 404–410 (in Chinese, with English abstract).

    Google Scholar 

  • Lin, C., Ning, X., Su, J., Lin, Y., & Xu, B. (2005). Environmental changes and responses of the ecosystems of the Yellow Sea during 1976–2000. Journal of Marine Systems, 55, 223–234.

    Article  Google Scholar 

  • Liu, F. S., & Wang, K. Y. (1992). The rivers emptying into Jiaozhou Bay and their geology. Marine Science, 1, 25–27 (in Chinese, with English abstract).

    Google Scholar 

  • Liu, Z., Wei, H., Liu, G. S., & Zhang, J. (2004). Simulation of water exchange in Jiaozhou Bay by average residence time approach. Estuarine Coastal and Shelf Science, 61, 25–35.

    Article  CAS  Google Scholar 

  • Liu S. M., Zhang J., Chen H. T., & Zhang G. S. (2005). Factors influencing nutrient dynamics in the eutrophic Jiaozhou Bay, North China. Progress in Oceanography, 66, 66–85.

    Article  Google Scholar 

  • Luo, K. L., Zhang, X. M., Chen, C. H., & Lu, Y. L. (2004). Primary estimation of atmospheric arsenic emission flux by coal combustion in the power plant of China. Chinese Science Bulletin, 49(19), 2014–2019 (in Chinese).

    Google Scholar 

  • Ma, J. X., Jin, Y., Liu, X. B., Shi, X. J., & Ma, Y. Q. (2003). Fishery ecological environmental report for Laizhou Bay in 2002. Shandong Fisheries, 20, 38–39 (in Chinese).

    Google Scholar 

  • Manzurul H. M., Atkins, P. J., & Dunn, C. E. (2003). The spatial pattern of risk from arsenic poisoning: A Bangladesh case study. Journal of Environmental Science and Health, A38, 1–24.

    Google Scholar 

  • Marine Environmental Monitoring Center, North Sea Branch, State Oceanic Administration of China (1992). A comprehensive environmental investigation and study on Jiaozhou Bay and its coastal area. Marine Science Bulletin, 11(3), 76. special issue (in Chinese).

    Google Scholar 

  • Martin, J. M., Guan, D. M., Elbaz-Poulichet, F., Thomas, A. J., & Gordeev, V. V. (1993). Preliminary assessment of the distributions of some trace elements (As, Cd, Cu, Fe, Ni, Pb and Zn) in a pristine aquatic environment: The Lena River estuary (Russia). Marine Chemistry, 43, 185–199.

    Article  CAS  Google Scholar 

  • Michel, P., Boutier, B., Herbland, A., Averty, B., Artigas, L. F., Auger, D., et al. (1997). Behaviour of arsenic on the continental shelf off the Gironde estuary: Role of phytoplankton in vertical fluxes during spring bloom conditions. Oceanologia Acta, 21, 325–333.

    Article  Google Scholar 

  • Middelburg, J. J., Hoede, D., van der Sloot, H. A., van der Weijden, C. H., & Wijkstra, J. (1988). Arsenic, antimony and vanadium in the North Atlantic Ocean. Geochimica et Cosmochimica Acta, 52, 2871–2878.

    Article  CAS  Google Scholar 

  • Millward, G. E., Kitts, H. J., Comber, S. D. W., Ebdon, L., & Howard, A. G. (1996). Methylated arsenic in the Southern North Sea. Estuarine, Coastal and Shelf Science, 43, 1–18.

    Article  CAS  Google Scholar 

  • Moon, D. S., Hong, G. H., Kim, S. H., Chung, C. S., Kim, Y. I., Shon, B. J., et al. (2002). Chemical composition of marine aerosol particles in the Northeast Asian marginal Sea. In G. H. Hong, J. Zhang & C. S. Chung (Eds.), Impact of interface exchange on the biogeochemical processes of the Yellow Sea and East China Sea. (pp. 31–68). Seoul: Bum Shin.

    Google Scholar 

  • Morgan, E. (1991). Chemometrics: Experimental Design. Analytical Chemistry by Open Learning. Chichester, England: Wiley.

    Google Scholar 

  • Munksgaard, N. C., & Parry, D. L. (2001). Trace metals, arsenic and lead isotopes in dissolved and particulate phases of North Australian coastal and estuarine seawater. Marine Chemistry, 75, 165–184.

    Article  CAS  Google Scholar 

  • Neff, J. M. (1997). Ecotoxicology of arsenic in the marine environment. Environmental Toxicology and Chemistry, 16, 917–927.

    Article  CAS  Google Scholar 

  • Niragu, J. Q., & Pacyna, J. M. (1998). Quantitative assessment of worldwide contaminant of air, water and soil by trace metals. Nature, 333, 134–139.

    Article  Google Scholar 

  • Nriagu J. O. (1994). Arsenic in the environment, part I: Cycling and characterization. Chichester, England: Wiley.

    Google Scholar 

  • Riedel, G. F., & Valette-Silver, N. (2002). Differences in the bioaccumulation of arsenic by oysters from Southeast coastal US and Chesapeake Bay: Environmental versus genetic control. Chemosphere, 49, 27–37.

    Article  CAS  Google Scholar 

  • Sanders, J. G. (1979). Effects of arsenic speciation and phosphate concentration on arsenic inhibition of Skeletonema Costatum (Bacillariophyceae). Journal of Phycology, 15, 424–428.

    CAS  Google Scholar 

  • Sanders, J. G. (1985). Arsenic geochemistry in Chesapeake Bay: Dependence upon anthropogenic input and phytoplankton species composition. Marine Chemistry, 17, 329–340.

    Article  CAS  Google Scholar 

  • Sanders, J. G., & Riedel, G. F. (1993). Trace element transformation during the development of an estuarine algal bloom. Estuaries, 16, 521–531.

    Article  CAS  Google Scholar 

  • Santosa, S. J., Mokudai, H., Takahashi, M. & Tanaka, S. (1996). The distribution of arsenic compounds in the ocean: Biological activity in the surface zone and removal processes in the deep zone. Applied Organometallic Chemistry, 10, 697–705.

    Article  CAS  Google Scholar 

  • Santosa, S. J., Wada, S. & Tanaka, S. (1994). Distribution and cycle of arsenic compounds in the ocean. Applied Organometallic Chemistry, 8, 273–283.

    Article  CAS  Google Scholar 

  • Santosa, S. J., Wada, S., Mokudai, H., & Tanaka, S. (1997). The contrasting behavior of arsenic and germanium species in seawater. Applied Organometallic Chemistry, 11, 403–414.

    Article  CAS  Google Scholar 

  • Seyler, P., & Martin, J. M. (1990). Distribution of arsenite and total dissolved arsenic in major French estuaries: dependence on biogeochemical processes and anthropogenic inputs. Marine Chemistry, 29, 277–294.

    Article  CAS  Google Scholar 

  • Shen, Z. L. (2001). Historical changes in nutrient structure and its influences on phytoplantkon composition in Jiaozhou Bay. Estuarine, Coastal and Shelf Science, 52, 211–224.

    Article  CAS  Google Scholar 

  • Shevchenko, V., Lisitzin, A., Vinogradova, A., & Stein, R. (2003). Heavy metals in aerosols over the seas of the Russian Arctic. The Science of the Total Environment, 306, 11–25.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  • State Oceanic Administration of China & Qingdao Aquiculture Bureau (1998). Report on control of the total amount of contaminant drainage from land into Jiaozhou Bay, 136 (in Chinese)

  • Sun, Y. L., Zhuang, G. S., Yuan, H., Zhang, X. Y., & Guo, J. H. (2004). Characteristics and resource analysis of a sandstorm in Beijing in 2002. Chinese Science Bulletin, 49(9), 340–346 (in Chinese).

    Article  CAS  Google Scholar 

  • Taylor, S. R. (1964). The abundance of chemical elements in the continental crust – A new table. Geochemica Cosmochemica Acta, 28, 1273–1285.

    Article  CAS  Google Scholar 

  • Tsai, Y. I., Kuo, S. C., & Lin, Y. H. (2003). Temporal characteristics of inhalable mercury and arsenic aerosols in the urban atmosphere in southern Taiwan. Atmospheric Environment, 37, 3401–3411.

    Article  CAS  Google Scholar 

  • Valette-Silver, N. J., Riedel, G. F., Crecelius, E. A., Windom, H., Smith, R. G. & Dolvin, S. S. (1999). Elevated arsenic concentrations in bivalves from the southeast coast of the USA. Marine Environmental Research, 48, 311–333.

    Article  CAS  Google Scholar 

  • Waldman, J. M., Lioy, P. J., Zelenka, M., Jing, L., Lin, Y. N., He, Q. C., et al. (1991). Wintertime measurements of aerosol acidity and trace elements in Wuhan, a city in central China. Atmospheric Environment. Part B. Urban Atmosphere, 25(1), 113–120.

    Article  Google Scholar 

  • Weng, X. C., Zhu, L. B., & Wang, Y. F. (1992). Physical oceanography. In R. Y. Liu, (Ed.), Ecology and Living Resources of Jiaozhou Bay (pp. 39–57). Beijing: Science Press. (in Chinese, with English abstract).

    Google Scholar 

  • WHO, (1993). Guidelines for drinking-water quality, vol. 1: Recommendations, second ed. Geneva: WHO.

    Google Scholar 

  • Xiao, H. B., Zhao, X. D., & Shi, Z. L. (1996). The arsenic in the waters, phytoplanktons and sediments of the East Jiaozhou Bay. Journal of Ocean University of Qingdao, 26, 341–346 (in Chinese, with English abstract).

    Google Scholar 

  • Xie, L., Ren, J. L., Zhang, J., Liu, S. M., & Wei, H. (2007). Preliminary study of dissolved aluminium in Jiaozhou Bay. Journal of Ocean University of China, in press (in Chinese, with English abstract).

  • Yang, S. J., Yang, Y. N., Chen, B. R., Zhou, M. Y., Lv, N. P., Yu, H. J., et al. (1994). Input of atmospheric trace elements to the near-China Ocean. Environmental Chemistry, 13(5), 382–388 (in Chinese, with English abstract).

    Google Scholar 

  • Yang, S. L., Meng, L., Zhang, J., Xue, Y. Z., Chen, H. T., et al. (2004). Suspended particulate matter in Jiaozhou Bay: Properties and variations in response to hydrodynamics and pollution. Chinese Science Bulletin, 49, 91–97 (in Chinese).

    Article  CAS  Google Scholar 

  • Yang, Y. L., & Wu, Y. C. (1999). Temperature and salinity structures of Jiaozhou Bay waters during 1991–1995. Journal of Oceanography of Huanghai and Bohai Seas, 17, 31–36 (In Chinese, with English abstract)

    Google Scholar 

  • Zhang H. Q. (1982). Distribution of arsenic in Jiaozhou Bay. Transactions of Oceanology and Limnology, 3, 23–30.

    Google Scholar 

  • Zhang, J. (1996). Geochemistry of arsenic in the Huanghe (Yellow River) and its delta region – A review of available data. Aquatic Geochemistry, 1, 241–275.

    Article  Google Scholar 

  • Zhang, J., Martin, J. M., Thomas, A. J., & Nirel, P. (1990). Fate of the particulate elements in the Changjiang Estuary and the East China Sea. In G. H. Yu, J. M. Martin & J. Y. Zhou (Eds.), Biogeochemical Study of the Changjiang Estuary (pp. 220–244). Beijing: China Ocean Press.

    Google Scholar 

  • Zhang, L. J., Wang, G., Yan, D., & Duan, G. Z. (2003). Characteristics of heavy metal pollution in the Licun River Estuary, Jiaozhou Bay, Qingdao. Journal of Shandong University of Technology (Science & Technoloty), 17, 8–14 (In Chinese, with English abstract).

    Google Scholar 

  • Zhang, J., Wu, Y., Liu, C. L., Shen, Z. B., & Zhang, Y. (2002). Major components of aerosols in north China: Desert region and the Yellow Sea in the spring and summer of 1995 and 1996. Journal of Atmospheric Science, 59, 1515–1532.

    Article  Google Scholar 

  • Zhang Y. Y., Zheng Q. H., He Y. Q., & Wen W. Y. (1995) An experimental study on the self purification of COD Mn, oil and As in the mixing area of saltwater and freshwater in the Zhujiang River Estuary. Tropical Oceanology, 14, 67–74 (In Chinese, with English abstract).

    CAS  Google Scholar 

  • Zhu, X. J., Liu, G. Q., Wang, S. Y. & Xiang, Y. (2005). Estimation of groundwater and nutrients flux from the Baisha Watershed into Jiaozhou Bay. Journal of Ocean University of China, 35, 67–72 (In Chinese, with English abstract).

    CAS  Google Scholar 

  • Zhuang, G. S., Guo, J. H., Yuan, H., & Zhang, X. Y. (2003). Feedback mechanism of link between iron and sulfur in the substance exchanges between the atmosphere and the ocean. Chinese Science Bulletin, 48(4), 313–319 (in Chinese).

    Article  Google Scholar 

  • Zhuang, G. S., Yi, Z., & Duce, R. A. (1992). Link between iron and sulfur suggested by the detection of Fe (II) in remote aerosols. Nature, 355:537–539.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Science Foundation of China (nos. 40036010, 40606028) and the Special Fund from the National Key Basic Research Program of China (2006CB400601). The authors would like to thank Dr. H Wei for the hydrographic data, Dr. G Q Liu for underground water sampling, H T CHen, Z Liu, X W Ye and X H Qi for their help in field and laboratory experiments, and Y F Bi for the aerosol and rainwater collection. We are also grateful to Dr. M De Gieter for the provision of the international standard sample NASS-4 and inter-calibration samples, and to H Xiong for the intercalibration work with the Brussels scientists. V. Ittekkot and two reviewers of WASP are gratefully acknowledged; their comments and suggestions greatly improved the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, J.L., Zhang, J., Li, D.D. et al. Speciation and Seasonal Variations of Dissolved Inorganic Arsenic in Jiaozhou Bay, North China. Water Air Soil Pollut: Focus 7, 655–671 (2007). https://doi.org/10.1007/s11267-007-9123-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11267-007-9123-0

Keywords

Navigation