Skip to main content
Log in

Transport and Immobilization of 2,4,6 15N-Trinitrotoluene in Soil Microcosms Subjected to Long Term Incubation Under Aerobic Conditions

  • Published:
Water, Air, & Soil Pollution: Focus

Abstract

15N-labeling and solid-state 13C and 15N nuclear magnetic resonance (NMR) spectroscopy was applied to study the immobilization of 2,4,6 trinitrotoluene (TNT) into soil organic matter (SOM). Uncontaminated soil from the Ap horizon of a Luvisol was mixed with 15N-TNT (enrichment: 99 atm%) and laid over an unspiked layer of the same material. The latter covered soil from the Bt horizon. The microcosms were aerobically incubated under laboratory conditions for up to 11 months. After 1 week, within the total microcosm approximately 90% of the added 15N (15Nadd) were recovered, mostly in the top layer (87%). After 11 months, this amount decreased to 71%, indicating losses due to denitration or transamination. Within two months, half of 15Nadd had been immobilized in the residues not extractable with organic solvents and water. The amount of the sequestered 15Nadd remained fairly constant until the end of the experiment pointing towards a high stability of TNT-SOM associates. Solid-state 15N NMR revealed their formation by covalent binding, most tentatively as amides. Complete reduction of TNT to triaminotoluene (TAT) was not prerequisite. The most pronounced downwards movement of 15N-TNT occurred during the first two months. The major part of it, however, experienced quick immobilization, leaving approximately 10% of 15Nadd recovered in the leachate at the end of the experiment. Calculations indicated contributions of inorganic 15Nadd. Approximately 25% of its organic 15Nadd originated from condensed N, suggesting that in soils the transport of partly reduced TNT is in close association with the organic matter of the soil solution to which they are covalently bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achtnich, C., Sieglen, U., Knackmuss, H.-J. and Lenke, H.: 1999, ‘Irreversible binding of biologically reduced 2,4,6-trinitrotoluene soil’, Environ. Toxicol. Chem. 18, 2416–2423.

    Article  CAS  Google Scholar 

  • Bruns-Nagel, D., Scheffer, S., Casper, B., Garn, H., Drzyzga, O., von Löw, E. and Gemsa, D.: 1999, ‘Effect of 2,4,6-trinitrotoluene and its metabolites on human moncytes’, Environ. Sci. Technol. 33, 2566–2570.

    Article  CAS  Google Scholar 

  • Comfort, S. D., Shea, P. J., Hundal, L. S., Li, Z., Woodbury, B. L., Martin, J. L. and Powers, W. L.: 1995, ‘TNT-transport and fate in contaminated soil’, J. Environ. Qual. 24, 1174–1182.

    CAS  Google Scholar 

  • Drzyzga, O., Gorontzy, T., Schmidt, A. and Blotevogel, K.-H.: 1995, ‘Toxicity of explosives and related compounds to the luminescent bacterium Vibrio fischeri NRRL-B-1177’, Arch. Environ. Contam. Toxicol. 28, 229–235.

    Article  CAS  Google Scholar 

  • Drzyzga, O., Bruns-Nagel, D., Gorontzy, T., Blotevogel, K.-H., Gemsa, D. and von Löw, E.: 1998, ‘Incorporation of 14C-labeled 2,4,6-trinitrotoluene (TNT) metabolites into different soil fractions after anaerobic and anaerobic-aerobic treatment of soil/molasses mixtures.’ Environ. Sci. Technol. 32, 3529–3535.

    Article  CAS  Google Scholar 

  • Eriksson, J., Frankki, S., Shchukarev, A. and Skyllberg, U.: 2004, ‘Binding of 2,4,6-Trinitrotoluene, aniline and nitrobenzene to dissolved and particulate soil organic matter’, Environ. Sci. Technol. 38, 3074–3080.

    Article  CAS  Google Scholar 

  • Fründ, R., González-Vila, F. J., Lüdemann, H.-D. and Martín, F.: 1987, ‘Comparison of the solid state CPMAS and solution carbon-13-NMR spectra of humic acids extracted from composted municipal refuse’, Z. Naturforsch. 42c, 205–208.

    Google Scholar 

  • Fuller, M. E. and Manning, J. J. F.: 1998, ‘Evidence for differential effects of 2,4,6-trinitrotoluene and other munitions compounds on specific subpopulations of soil microbial communities’, Environ. Toxicol. Chem. 17, 2185–2195.

    Article  CAS  Google Scholar 

  • Goncalves, C. N., Dalmolin, R. S. D., Dick, D. P., Knicker, H., Klamt, E. and Kögel-Knabner, I.: 2003, ‘The effect of 10% HF treatment on the resolution of 13C CP/MAS NMR spectra and on the quality of organic matter in Ferralsols’, Geoderma 116, 373–392.

    Article  CAS  Google Scholar 

  • Gong, P., Wilke, B.-M. and Fleischmann, S.: 1999, ‘Soil-based phytotoxicity of 2,4,6-trinitrotoluene (TNT) to terrestrial higher plants’, Treshold Concentration, Phytoremediation 36, 152–157.

    CAS  Google Scholar 

  • Honeycutt, M. E., Jarvis, A. S. and McFarland, V. A.: 1996, ‘Cytotoxicity and mutagenicity of 2,4,6,-trinitrotoluene and its metabolites.’ Ecotoxicol. Environ. Saf. 35, 229–235.

    Article  Google Scholar 

  • Hundal, L. S., Shea, P. J., Comfort, S. D., Powers, W. L. and Singh, J.: 1997, ‘Long-term TNT sorption and bound residue formation in soil’, J. Environ. Qual. 26, 896–904.

    Article  CAS  Google Scholar 

  • Knicker, H., Fründ, R. and Lüdemann, H.-D.: 1993, ‘The chemical nature of nitrogen in soil organic matter’, Naturwissenschaften 80, 219–221.

    Article  CAS  Google Scholar 

  • Knicker, H. and Lüdemann, H.-D.: 1995, ‘N-15 and C-13 CPMAS and solution NMR studies of N-15 enriched plant material during 600 days of microbial degradation’, Org. Geochem. 23, 329–341.

    Article  CAS  Google Scholar 

  • Knicker, H., Bruns-Nagel, D., Drzyga, O., von Löw, E. and Steinbach, K.: 1999, ‘Characterization of 15N-TNT residues after an anaerobic/aerobic treatment of soil/molasses mixtures by solid-state 15N NMR spectroscopy. I. Determination and optimization of relevant NMR spectroscopic parameters’, Environ. Sci. Technol. 33, 343–349.

    Article  CAS  Google Scholar 

  • Knicker, H.: 2000, ‘Biogenic nitrogen in soils as revealed by solid-state carbon-13 and nitrogen-15 nuclear magnetic resonance spectroscopy’, J. Environ. Qual. 29, 715–723.

    CAS  Google Scholar 

  • Knicker, H.: 2003, ‘Incorporation of 15N-TNT transformation products into humifying plant organic matter as revealed by one- and two-dimensional solid state NMR spectroscopy’, Sci. Tot. Environ. 308, 211–220.

    Article  CAS  Google Scholar 

  • Knicker, H. and Müller, P.: 2003, ‘Binding of trinitrotoluene (TNT) to water extractable humus’, Environ. Chem. Lett. 1, 121–125.

    Article  CAS  Google Scholar 

  • Look, A.: 2001, ‘Grainsize-dependent solubility kinetics of 2,4,6-TNT’, Wasser & Boden 53, 45–51.

    CAS  Google Scholar 

  • Major, M. A.: 1999, ‘Biological degradation of explosives’, in: C.S.S.o.A. American Society of Agronomy, Soil Science Society of America (Ed.), Bioremediation of Contaminated Soils, Agronomy Monograph no. 37 (Ed. by C.S.S.o.A. American Society of Agronomy, Soil Science Society of America), Madison, pp. 111–132.

  • Newman, R. H.: 1992, ‘Nuclear magnetic resonance study of spatial relationships between chemical components in wood cell walls’, Holzforschung 46, 205–210.

    Article  CAS  Google Scholar 

  • Peersen, O. B., Wu, X., Kustanovich, I. and Smith, S. O.: 1993, ‘Variable-amplitude cross-polarization MAS NMR’, J. Mag. Res. 104, 334–339.

    Article  CAS  Google Scholar 

  • Phelan, J. M. and Barnett, J. L.: 2001, ‘Solubility of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene in water’, J. Chem. Eng. Data 46, 375–376.

    Article  CAS  Google Scholar 

  • Preston, C. M. and Newman, R. H.: 1992, ‘Demonstration of spatial heterogeneity in the organic matter of de-ashed humin samples by solid-state 13C CPMAS NMR’, Can. J. Soil Sci. 72, 13–19.

    CAS  Google Scholar 

  • Rieger, P.-G. and Knackmuss, H.-J.: 1995, ‘Basic knowledge and perspectives on biodegradation of 2,4,6-trinitrotoluene and related nitroaromatic compounds in contaminated soil’, in: J. C. Spain (Ed.), Biodegradation of Nitroaromatic Compounds, Plenum Publishing Co., New York, NY, pp. 1–18.

    Google Scholar 

  • Thorn, K. A., Pettigrew, P. J., Goldberg, W. S. and Weber, E. J.: 1996, ‘Covalent binding of aniline to humic substances. 2. 15N NMR studies of nucleophilic addition reactions’, Environ. Sci. Technol. 30, 2764–2775.

    Article  CAS  Google Scholar 

  • Thorn, K. A. and Kennedy, K. R.: 2002, ‘15N NMR investigation of the covalent binding of reduced TNT amines to soil humic acid, model compounds, and lignocellulose’, Environ. Sci. Technol. 36, 3787–3796.

    Article  CAS  Google Scholar 

  • Weiβ, M., Geyer, R., Russow, R., Richnow, H.H. and Kästner, M.: 2004, ‘Fate and metabolism of (15N)2,4,6-trinitrotoluene in soil’, Environ. Toxicol. Chem. 23, 1852–1860.

    Article  Google Scholar 

  • Weissmahr, K. W., Haderlein, S. B. and Schwarzenbach, R. P.: 1998, ‘Complex formation of soil minerals with nitroaromatic explosives and other π-acceptors’, Soil Sci. Soc. Am. J. 62, 369–378.

    Article  CAS  Google Scholar 

  • Witanowski, M., Stefaniak, L. and Webb., G. A., (1993) Nitrogen NMR Spectroscopy. In: Annual Reports on NMR Spectroscopy, 25 (Ed. by G. Webb), pp. 480. Academic Press, London.

    Google Scholar 

  • Won, W. D., Disalvo, L. H. and Ng, J.: 1976, ‘Toxicity and mutagenicity of 2,4,6-trinitrotoluene and its microbial metabolites.’ Appl. Environ. Microbiol. 31, 576–580.

    CAS  Google Scholar 

  • Wu, R. R., Kao, H. M., Chiang, J.-C. and Woo, E. M.: 2002, ‘Solid-state NMR studies on phase behavior and motional mobility in binary blends of polysterene and poly(cyclohexyl methacrylate)’, Polymer 43, 171–176.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Knicker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knicker, H., Müller, P. Transport and Immobilization of 2,4,6 15N-Trinitrotoluene in Soil Microcosms Subjected to Long Term Incubation Under Aerobic Conditions. Water Air Soil Pollut: Focus 6, 235–260 (2006). https://doi.org/10.1007/s11267-005-9021-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11267-005-9021-2

Keywords

Navigation